Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part I of the course APMA0340
Introduction to Linear Algebra with Mathematica

Preface


All four kinds of Chebyshev polynomials are orthogonal on the interval [−1, 1]

\[ \left\langle C_n (x) , C_m (x) \right\rangle = \int_{-1}^{+1} C_n (x)\,C_m (x)\,w(x)\,{\text d}x = \delta_{n,m} \| C_n \|^2 , \]
with respect to the following weight functions w(x) and norms \( \| C_n (x) \|^2 : \)

\[ \mbox{for } \quad T_n (x): \qquad w(x) = \frac{1}{\sqrt{1-x^2}} \quad \mbox{and} \quad \| T_n (x) \|^2 = \begin{cases} \pi , & \ \mbox{ when } \quad n=0, \\ \pi /2 , & \ \mbox{ for } \quad n > 0 ; \end{cases} \]
\[ \mbox{for } \quad U_n (x): \qquad w(x) = \sqrt{1-x^2} \quad \mbox{and} \quad \| U_n (x) \|^2 = \frac{\pi}{2} ; \]
\[ \mbox{for } \quad V_n (x): \qquad w(x) = \sqrt{\frac{1 + x^2}{1- x^2}} \quad \mbox{and} \quad \| V_n (x) \|^2 = \pi ; \]
\[ \mbox{for } \quad W_n (x): \qquad w(x) = \sqrt{\frac{1 - x^2}{1+ x^2}} \quad \mbox{and} \quad \| W_n (x) \|^2 = \pi . \]

Orthogonality of Chebyshev polynomials


The Chebyshev polynomials satisfy orthogonalities with respect to various weight functions as in the following:

\begin{align*} \int_{-1}^1 \left( 1 - x^2 \right)^{-1/2} T_n (x) T_m (x) \,{\text d}x &= \frac{\pi}{{\cal E}_n} \, \delta_{n,m} , \\ \int_{-1}^1 \left( 1 - x^2 \right)^{1/2} U_n (x) U_m (x) \,{\text d}x &= \frac{\pi}{2} \, \delta_{n,m} , \\ \int_{-1}^1 \left( \frac{1+x}{1-x} \right)^{1/2} V_n (x) V_m (x) \,{\text d}x &= \pi \, \delta_{n,m} , \\ \int_{-1}^1 \left( \frac{1-x}{1+x} \right)^{1/2} W_n (x) W_m (x) \,{\text d}x &= \pi \, \delta_{n,m} , \end{align*}
where
\[ \delta_{n,m} = \begin{cases} 0, & \ \mbox{if } n \ne m , \\ 1 , & \ \mbox{if } n = m ; \end{cases} \qquad\quad {\cal E}_n = \begin{cases} 1 , & \ \mbox{if } n =0, \\ 2, & \ \mbox{if } n \ge 1. \end{cases} \]
For many applications the range [0, 1] is more convenient to use than [−1, 1]. Thus, we map the independent variable x onto 2x −1 and label the Chebyshev polynomials by an additional star
\[ C_n^{\ast} (x) = C_n \left( 2x -1 \right) \qquad \mbox{with} \qquad C^{\ast} = \left\{ T, \ U, \ V, \ W \right\} . \]
The shifted Chebyshev polynomials are orthogonal
\[ \left\langle C_n^{\ast} (x) , C_m^{\ast} (x) \right\rangle = \int_{0}^{+1} C_n^{\ast} (x)\,C_m^{\ast} (x)\,w(x)\,{\text d}x = \delta_{n,m} \| C_n^{\ast} \|^2 , \]
with respect to the following weight functions w(x) and norms \( \| C_n^{\ast} (x) \|^2 : \)

\[ \mbox{for } \quad T_n^{\ast} (x): \qquad w(x) = \frac{1}{\sqrt{1-x^2}} \quad \mbox{and} \quad \| T_n^{\ast} (x) \|^2 = \begin{cases} \pi , & \ \mbox{ when } \quad n=0, \\ \pi /2 , & \ \mbox{ for } \quad n > 0 ; \end{cases} \]
\[ \mbox{for } \quad U_n^{\ast} (x): \qquad w(x) = \sqrt{1-x^2} \quad \mbox{and} \quad \| U_n^{\ast} (x) \|^2 = \frac{\pi}{8} ; \]
\[ \mbox{for } \quad V_n^{\ast} (x): \qquad w(x) = \sqrt{\frac{1 + x^2}{1- x^2}} \quad \mbox{and} \quad \| V_n^{\ast} (x) \|^2 = \frac{\pi}{2} ; \]
\[ \mbox{for } \quad W_n^{\ast} (x): \qquad w(x) = \sqrt{\frac{1 - x^2}{1+ x^2}} \quad \mbox{and} \quad \| W_n^{\ast} (x) \|^2 = \frac{\pi}{2} . \]
More generally, Chebyshev polynomials as well as other orthogonal polynomials can be transformed to any given range [𝑎, b] via
\[ s(x) = \frac{2x - a -b}{b-a} \qquad \mbox{with} \quad x \in [a,b] \quad \mbox{and} \quad s \in [-1,1] . \]
For example,
\[ U_n^{[a,b]} (x) = U_n (s(x)) . \]
  1. Clenshaw, C.W., Norton, H.J.: The solution of nonlinear ordinary differential equations in chebyshev series. The Computer Journal, 1963, {\bf 6}, Issue 1, 88–92; https://doi.org/10.1093

 

Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions