Preface
In this section, we show that Bessel's functions
\[ 
\phi_n (x) = J_{\nu} \left( \mu_n \frac{x}{\ell} \right) \qquad (n=1,2,3,\ldots ) 
\] 
 
are orthogonal when parameters μn are positive roots of some transcendent equation involving Bessel functions of the first kind. Orthogonal means that 
\[ 
\left\langle \phi_n (x) , \phi_k (x) \right\rangle = \int_0^{\ell} J_{\nu} \left( \mu_n \frac{x}{\ell} \right) J_{\nu} \left( \mu_k \frac{x}{\ell} \right) x\,{\text d}x = \begin{cases} 0, & \ \mbox{ if } \quad n \ne k , 
\\ 
\| J_{\nu} \|^2 , & \ \mbox{ when } \quad n=k , 
\end{cases} 
\] 
 
where the value of the norm squared, \( \| J_{\nu} \|^2 , \)  depends on the boundary condition at the right endpoint x = ℓ. 
	Orthogonality of Bessel's functions
For any real number α ∈ ℝ, the Bessel equation with a parameter
\begin{equation} \label{EqOrtho.1} 
x^2 y'' + x\,y' + \left( \alpha^2 x^2 - \nu^2 \right) y = 0 \qquad \mbox{or in self-adjoint form} \qquad \frac{\text d}{{\text d}x} \left( x\,  \frac{{\text d}y}{{\text d}x} \right) + \left( \alpha^2 x - \frac{\nu^2}{x} \right) y = 0 
\end{equation} 
has a bounded solution
\[ 
\phi (x) = J_{\nu} \left( \alpha \,x \right) , 
\] 
which can be justified by direct substitution.  For two distinct positive numbers k1 and k2, we consider two functions 
\[ 
\phi_1 (x) = J_{\nu} \left( k_1 \,x \right)  \qquad \mbox{and} \qquad  \phi_2 (x) = J_{\nu} \left( k_2 \,x \right) . 
\] 
They are solutions of equations 
\[ 
\frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) + \left( k_1^2 x - \frac{\nu}{x} \right) \phi_1 (x) = 0 
\] 
and 
\[ 
\frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) + \left( k_2^2 x - \frac{\nu}{x} \right) \phi_2 (x) = 0 
\] 
respectively. Multiplying the forme by ϕ2(x) and the latter by  ϕ1(x), and subtracting the results, we obtain 
\[ 
\left( k_1^2 - k_2^2 \right) \phi_1 (x)\,\phi_2 (x)\,x = - \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) + \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) . 
\]
Integrating both sides of the latter with respect to x ∈ [0, ℓ],  we get 
\[ 
\left( k_1^2 - k_2^2 \right) \int_0^{\ell} \phi_1 (x)\,\phi_2 (x)\,x \,{\text d}x = -  \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) +  \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) . 
\]
Performing integration by parts shows 
\[ 
-  \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) +  \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) = \left.  x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \, \phi_1 (x) - x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \, \phi_2 (x) \right\vert_{x=0}^{x=\ell} . 
\]
If ν > 1, the lower limit becomes zero, and we get 
\[ 
\left( k_1^2 - k_2^2 \right) \int_0^{\ell} \phi_1 (x)\,\phi_2 (x)\,x \,{\text d}x = \ell\left. \frac{{\text d} \phi_2 (x)}{{\text d}x} \right\vert_{x=\ell} \, \phi_1 (\ell ) - \ell\, \left. \frac{{\text d} \phi_1 (x)}{{\text d}x}  \right\vert_{x=\ell} \, \phi_2 (\ell ) 
\]
Upon setting k1 = μn/ℓ and k2 = μk/ℓ, we obtain the integral relation 
\begin{equation} \label{EqOrtho.2} 
\frac{\left( \mu_n^2 - \mu_k^2 \right)}{\ell^2} \int_0^{\ell} {\text d}x \,x\,J_{\nu} \left(  \mu_n \frac{x}{\ell}\right) J_{\nu} \left(  \mu_k \frac{x}{\ell}\right) = \mu_k J_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_k \right) - \mu_n J_{\nu} \left( \mu_k \right) J'_{\nu} \left( \mu_n \right) . 
\end{equation} 
If parameters μn and μk are chosen in a way to annihilate the right-hand side of Eq.\eqref{EqOrtho.2}, we get orthogonality of Bessel's functions. We consider three important cases of boundary conditions for which Bessel's functions are orthogonal. 
Dirichlet boundary conditions
\[ 
J_{\nu} (\mu ) = 0. 
\] 
 
Then right-hand side of Eq.\eqref{EqOrtho.2} wil be zero for n ≠ k. So we need to determine 
\[ 
\left\| J_{\nu} \left( \mu_n \frac{x}{\ell}\right) \right\|^2 = \left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_n \frac{x}{\ell}\right) \right\rangle = \int_0^{\ell} J_{\nu}^2 \left( \mu_n \frac{x}{\ell}\right) x\,{\text d}x . 
\] 
 
We find its value by taking the limit as k  → μn in the orthogonality relation \eqref{EqOrtho.2}: 
\[ 
\| J_{\nu} \|^2 = \lim_{k\to \mu_n} \,\frac{\ell^2}{k^2 - \mu_n^2} \left[ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right] 
\] 
 
 Application of the l'Hôpital's rule yields 
\[ 
\| J_{\nu} \|^2 = \lim_{k\to \mu_n} \frac{\ell^2}{2k} \,\frac{\text d}{{\text d}k} \left\{ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) \right\} = \frac{\ell^2}{2}\, \left[ J'_{\nu} \left( \mu_n \right) \right]^2 = \frac{\ell^2}{2}\, \left[ J_{\nu +1} \left( \mu_n \right) \right]^2 . 
\] 
 
Thus, we have 
\begin{equation} \label{EqOrtho.3} 
\left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_k \frac{x}{\ell}\right) \right\rangle = \begin{cases} 
0, & \ \mbox{ if } \quad n\ne k , 
\\ 
\frac{\ell^2}{2}\,J_{\nu +1} \left( \mu_n \right) , & \ \mbox{ when }\quad n=k. 
\end{cases}
\end{equation} 
Neumann boundary conditions
\[ 
J'_{\nu} (\mu ) = 0. 
\] 
 
Then the right-hand side of Eq.\eqref{EqOrtho.2} will be zero for n ≠ k. To determine the value of square norm when n = k, we again apply the l'Hôpital's rule and obtain 
\begin{equation} \label{EqOrtho.4} 
\left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_k \frac{x}{\ell}\right) \right\rangle = \begin{cases} 
0, & \ \mbox{ if } \quad n\ne k , 
\\ 
\frac{\ell^2}{2}\,J_{\nu} \left( \mu_n \right) , & \ \mbox{ when }\quad n=k. 
\end{cases}
\end{equation} 
Boundary conditions of the third kind
\[ 
a \ell\,J_{\nu} (\mu ) + b\,\mu\,J'_{\nu} (\mu ) =0 , 
\] 
 
where 𝑎 and b are some real numbers. 
It is not hard to verify that the right-hand side of Eq.\eqref{EqOrtho.2} will be zero for n ≠ k. To determine the value of square norm when n = k, we take the limit 
\[ 
\| J_{\nu} \|^2 = \int_0^{\ell}  J_{\nu}^2 \left( \mu_n \frac{x}{\ell} \right) x\,{\text d}x  
= \lim_{k\to \mu_n} \,\frac{\ell^2}{k^2 - \mu_n^2} \left[ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right] 
\] 
 
We again apply the l'Hôpital's rule and obtain 
\begin{align*}
\| J_{\nu} \|^2 &= \frac{\ell^2}{2\,\mu_n}\lim_{k\to \mu_n} \frac{\text d}{{\text d}k} \left\{ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right\}
\\ 
&= \frac{\ell^2}{2\,\mu_n} \lim_{k\to \mu_n} \left\{ \mu_n J'_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) - k\, J_{\nu} \left( \mu_n \right) J''_{\nu} \left( k \right) \right\} 
\\ 
&= \frac{\ell^2}{2\,\mu_n} \left\{ \mu_n J'_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_n \right) - J_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_n \right) - \mu_n J_{\nu} \left( \mu_n \right) J''_{\nu} \left( \mu_n \right) \right\} . 
\end{align*} 
 
From Bessel's equation, we have 
\[ 
-\mu\, J''_{\nu} (\mu ) = J'_{\nu} (\mu ) + \left( \mu - \frac{\nu^2}{\mu} \right) J_{\nu} (\mu ) . 
\] 
So 
\[ 
-\mu\,J_{\nu} (\mu )\,J''_{\nu} (\mu ) = J_{\nu} (\mu )\,J'_{\nu} (\mu ) + \left( \mu - \frac{\nu^2}{\mu} \right) J_{\nu} (\mu )\,J_{\nu} (\mu ) , 
\] 
and we get 
\[ 
\| J_{\nu} \|^2 = \frac{\ell^2}{2} \left\{ \left[J'_{\nu} (\mu_n )  \right]^2 + \left( 1 - \frac{\nu^2}{\mu^2_n} \right)  J_{\nu}^2 (\mu_n ) \right\} 
\] 
			
- Bowman, Frank Introduction to Bessel Functions (Dover: New York, 1958). ISBN 0-486-60462-4. QA408.B68
 - Dutka, J., On the early history of Bessel functions, Archive for History of Exact Sciences, volume 49, pages 105–134 (1995). https://doi.org/10.1007/BF00376544
 - Watson, G.N., A Treatise on the Theory of Bessel Functions,
 
Return to Mathematica page 
 
Return to the main page (APMA0340) 
  Return to the Part 1 Matrix Algebra 
  Return to the Part 2 Linear Systems of Ordinary Differential Equations 
  Return to the Part 3 Non-linear Systems of Ordinary Differential Equations 
  Return to the Part 4  Numerical Methods 
  Return to the Part 5  Fourier Series 
  Return to the Part 6  Partial Differential Equations
  Return to the Part 7  Special Functions