Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part I of the course APMA0340
Introduction to Linear Algebra with Mathematica

Preface


In this section, we show that Bessel's functions

\[ \phi_n (x) = J_{\nu} \left( \mu_n \frac{x}{\ell} \right) \qquad (n=1,2,3,\ldots ) \]
are orthogonal when parameters μn are positive roots of some transcendent equation involving Bessel functions of the first kind. Orthogonal means that
\[ \left\langle \phi_n (x) , \phi_k (x) \right\rangle = \int_0^{\ell} J_{\nu} \left( \mu_n \frac{x}{\ell} \right) J_{\nu} \left( \mu_k \frac{x}{\ell} \right) x\,{\text d}x = \begin{cases} 0, & \ \mbox{ if } \quad n \ne k , \\ \| J_{\nu} \|^2 , & \ \mbox{ when } \quad n=k , \end{cases} \]
where the value of the norm squared, \( \| J_{\nu} \|^2 , \) depends on the boundary condition at the right endpoint x = ℓ.

Orthogonality of Bessel's functions


For any real number α ∈ ℝ, the Bessel equation with a parameter
\begin{equation} \label{EqOrtho.1} x^2 y'' + x\,y' + \left( \alpha^2 x^2 - \nu^2 \right) y = 0 \qquad \mbox{or in self-adjoint form} \qquad \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d}y}{{\text d}x} \right) + \left( \alpha^2 x - \frac{\nu^2}{x} \right) y = 0 \end{equation}
has a bounded solution
\[ \phi (x) = J_{\nu} \left( \alpha \,x \right) , \]
which can be justified by direct substitution. For two distinct positive numbers k1 and k2, we consider two functions
\[ \phi_1 (x) = J_{\nu} \left( k_1 \,x \right) \qquad \mbox{and} \qquad \phi_2 (x) = J_{\nu} \left( k_2 \,x \right) . \]
They are solutions of equations
\[ \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) + \left( k_1^2 x - \frac{\nu}{x} \right) \phi_1 (x) = 0 \]
and
\[ \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) + \left( k_2^2 x - \frac{\nu}{x} \right) \phi_2 (x) = 0 \]
respectively. Multiplying the forme by ϕ2(x) and the latter by ϕ1(x), and subtracting the results, we obtain
\[ \left( k_1^2 - k_2^2 \right) \phi_1 (x)\,\phi_2 (x)\,x = - \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) + \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) . \]
Integrating both sides of the latter with respect to x ∈ [0, ℓ], we get
\[ \left( k_1^2 - k_2^2 \right) \int_0^{\ell} \phi_1 (x)\,\phi_2 (x)\,x \,{\text d}x = - \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) + \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) . \]
Performing integration by parts shows
\[ - \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) + \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) = \left. x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \, \phi_1 (x) - x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \, \phi_2 (x) \right\vert_{x=0}^{x=\ell} . \]
If ν > 1, the lower limit becomes zero, and we get
\[ \left( k_1^2 - k_2^2 \right) \int_0^{\ell} \phi_1 (x)\,\phi_2 (x)\,x \,{\text d}x = \ell\left. \frac{{\text d} \phi_2 (x)}{{\text d}x} \right\vert_{x=\ell} \, \phi_1 (\ell ) - \ell\, \left. \frac{{\text d} \phi_1 (x)}{{\text d}x} \right\vert_{x=\ell} \, \phi_2 (\ell ) \]
Upon setting k1 = μn/ℓ and k2 = μk/ℓ, we obtain the integral relation
\begin{equation} \label{EqOrtho.2} \frac{\left( \mu_n^2 - \mu_k^2 \right)}{\ell^2} \int_0^{\ell} {\text d}x \,x\,J_{\nu} \left( \mu_n \frac{x}{\ell}\right) J_{\nu} \left( \mu_k \frac{x}{\ell}\right) = \mu_k J_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_k \right) - \mu_n J_{\nu} \left( \mu_k \right) J'_{\nu} \left( \mu_n \right) . \end{equation}
If parameters μn and μk are chosen in a way to annihilate the right-hand side of Eq.\eqref{EqOrtho.2}, we get orthogonality of Bessel's functions. We consider three important cases of boundary conditions for which Bessel's functions are orthogonal.

 

Dirichlet boundary conditions


Let μn (n = 1, 2, 3, …) be a sequence of positive roots of the equation
\[ J_{\nu} (\mu ) = 0. \]
Then right-hand side of Eq.\eqref{EqOrtho.2} wil be zero for nk. So we need to determine
\[ \left\| J_{\nu} \left( \mu_n \frac{x}{\ell}\right) \right\|^2 = \left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_n \frac{x}{\ell}\right) \right\rangle = \int_0^{\ell} J_{\nu}^2 \left( \mu_n \frac{x}{\ell}\right) x\,{\text d}x . \]
We find its value by taking the limit as k → μn in the orthogonality relation \eqref{EqOrtho.2}:
\[ \| J_{\nu} \|^2 = \lim_{k\to \mu_n} \,\frac{\ell^2}{k^2 - \mu_n^2} \left[ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right] \]
Application of the l'Hôpital's rule yields
\[ \| J_{\nu} \|^2 = \lim_{k\to \mu_n} \frac{\ell^2}{2k} \,\frac{\text d}{{\text d}k} \left\{ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) \right\} = \frac{\ell^2}{2}\, \left[ J'_{\nu} \left( \mu_n \right) \right]^2 = \frac{\ell^2}{2}\, \left[ J_{\nu +1} \left( \mu_n \right) \right]^2 . \]
Thus, we have
\begin{equation} \label{EqOrtho.3} \left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_k \frac{x}{\ell}\right) \right\rangle = \begin{cases} 0, & \ \mbox{ if } \quad n\ne k , \\ \frac{\ell^2}{2}\,J_{\nu +1} \left( \mu_n \right) , & \ \mbox{ when }\quad n=k. \end{cases} \end{equation}

 

Neumann boundary conditions


Let μn (n = 1, 2, 3, …) be a sequence of positive roots of the equation
\[ J'_{\nu} (\mu ) = 0. \]
Then the right-hand side of Eq.\eqref{EqOrtho.2} will be zero for nk. To determine the value of square norm when n = k, we again apply the l'Hôpital's rule and obtain
\begin{equation} \label{EqOrtho.4} \left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_k \frac{x}{\ell}\right) \right\rangle = \begin{cases} 0, & \ \mbox{ if } \quad n\ne k , \\ \frac{\ell^2}{2}\,J_{\nu} \left( \mu_n \right) , & \ \mbox{ when }\quad n=k. \end{cases} \end{equation}

 

Boundary conditions of the third kind


Let μn (n = 1, 2, 3, …) be a sequence of positive roots of the equation
\[ a \ell\,J_{\nu} (\mu ) + b\,\mu\,J'_{\nu} (\mu ) =0 , \]
where 𝑎 and b are some real numbers. It is not hard to verify that the right-hand side of Eq.\eqref{EqOrtho.2} will be zero for nk. To determine the value of square norm when n = k, we take the limit
\[ \| J_{\nu} \|^2 = \int_0^{\ell} J_{\nu}^2 \left( \mu_n \frac{x}{\ell} \right) x\,{\text d}x = \lim_{k\to \mu_n} \,\frac{\ell^2}{k^2 - \mu_n^2} \left[ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right] \]
We again apply the l'Hôpital's rule and obtain
\begin{align*} \| J_{\nu} \|^2 &= \frac{\ell^2}{2\,\mu_n}\lim_{k\to \mu_n} \frac{\text d}{{\text d}k} \left\{ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right\} \\ &= \frac{\ell^2}{2\,\mu_n} \lim_{k\to \mu_n} \left\{ \mu_n J'_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) - k\, J_{\nu} \left( \mu_n \right) J''_{\nu} \left( k \right) \right\} \\ &= \frac{\ell^2}{2\,\mu_n} \left\{ \mu_n J'_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_n \right) - J_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_n \right) - \mu_n J_{\nu} \left( \mu_n \right) J''_{\nu} \left( \mu_n \right) \right\} . \end{align*}
From Bessel's equation, we have
\[ -\mu\, J''_{\nu} (\mu ) = J'_{\nu} (\mu ) + \left( \mu - \frac{\nu^2}{\mu} \right) J_{\nu} (\mu ) . \]
So
\[ -\mu\,J_{\nu} (\mu )\,J''_{\nu} (\mu ) = J_{\nu} (\mu )\,J'_{\nu} (\mu ) + \left( \mu - \frac{\nu^2}{\mu} \right) J_{\nu} (\mu )\,J_{\nu} (\mu ) , \]
and we get
\[ \| J_{\nu} \|^2 = \frac{\ell^2}{2} \left\{ \left[J'_{\nu} (\mu_n ) \right]^2 + \left( 1 - \frac{\nu^2}{\mu^2_n} \right) J_{\nu}^2 (\mu_n ) \right\} \]

 

  1. Bowman, Frank Introduction to Bessel Functions (Dover: New York, 1958). ISBN 0-486-60462-4. QA408.B68
  2. Dutka, J., On the early history of Bessel functions, Archive for History of Exact Sciences, volume 49, pages 105–134 (1995). https://doi.org/10.1007/BF00376544
  3. Watson, G.N., A Treatise on the Theory of Bessel Functions,

 

Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions