Kelvin functions
\[ 
e^{x \left( z - 1/z \right) /2} = \sum_{n=-\infty}^{\infty} z^n J_n (x) 
\]
			
- Bowman, Frank Introduction to Bessel Functions (Dover: New York, 1958). ISBN 0-486-60462-4.
- Dutka, J., On the early history of Bessel functions, Archive for History of Exact Sciences, volume 49, pages 105–134 (1995). https://doi.org/10.1007/BF00376544
- Watson, G.N., A Treatise on the Theory of Bessel Functions,
Return to Mathematica page 
 
Return to the main page (APMA0340) 
  Return to the Part 1 Matrix Algebra 
  Return to the Part 2 Linear Systems of Ordinary Differential Equations 
  Return to the Part 3 Non-linear Systems of Ordinary Differential Equations 
  Return to the Part 4  Numerical Methods 
  Return to the Part 5  Fourier Series 
  Return to the Part 6  Partial Differential Equations
  Return to the Part 7  Special Functions