Preface


This section concerns about Laplace equations in infinite domain.

Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part VI of the course APMA0340
Introduction to Linear Algebra with Mathematica

Laplace equation in infinite domain


We can identify the n-dimensional Eucledian space ℝn with \( \displaystyle \mathbb{R}^{n-1} \times \mathbb{R} , \) writing a typical point z \in ℝn as \( \displaystyle z = (x,y) , \) where x ∈ ℝn-1 and y ∈ ℝ. The upper half-space is the set
\[ R_{+}^n = \left\{ (x,y)\,:\ x\in \mathbb{R}^{n-1} , \quad y> 0 \right\} . \]
We identify ℝn-1 with ℝn-1 × {0}; with this convention we then have the boundary \( \displaystyle \partial \mathbb{R}^{n}_{+} = \mathbb{R}^{n-1} . \)

A harmonic function u (so Δ u = 0) in an unbounded domain E is called regular if it satisfies the following condition at infinity:
  • For n = 2 (two dimensional space ℝ²), u(x, y) is bounded at infinity when (x, y) ↦ ∞.
  • For n > 2, the harmonic function u(x, y) approaches zero as (x, y) ↦ ∞.

When domain is unbounded, the main technique to solve Laplace's equation is the Fourier transformation

\begin{equation} \label{Fourier.1} \hat{f} (k ) =ℱ_{x \to k}\left[ f(x) \right] (k ) = f^F (k ) = \int_{-\infty}^{\infty} f(x)\,e^{{\bf j} k\cdot x} \,{\text d}x \qquad ({\bf j}^2 = -1) . \end{equation}
The Fourier transformation gives the spectral representation of the derivative operator j ∂x. It means that the Fourier transformation represent this differential operator as a multiplication operator:
\begin{equation} \label{Fourier.2} ℱ_{x \to k} \left[ {\bf j}\,\frac{{\text d} f(x)}{{\text d} x} \right] = k\,ℱ\left[ f(x) \right] (k) = k \,f^F (k ) . \end{equation}
Recall that the inverse Fourier transform is also expressed via an improper integral, but now in special sense:
\begin{equation} \label{Fourier.3} ℱ^{-1}_{k \to x} \left[ f^F (k ) \right] = \mbox{(P.V.) }\frac{1}{2\pi} \int_{-\infty}^{\infty} f^F (k)\,e^{-{\bf j} k\, x} \,{\text d}k = \lim_{R\to \infty} \frac{1}{2\pi} \int_{-R}^{R} {\text d}k\, e^{- {\bf j}kx} f^F (k) = \frac{f(x+0) + f(x-0)}{2} \qquad ({\bf j}^2 = -1). \end{equation}
Here P.V. stands for Cauchy "principle value", which is used to define the inverse Fourier transform. In particular,
\begin{equation} \label{Fourier.4} ℱ^{-1}_{k \to x} \left[ f^F (-k ) \right] = \int_{-\infty}^{\infty} f^F (k)\,e^{-{\bf j} k\, (-x)} \,{\text d}k = \int_{\infty}^{\infty} f^F (k)\,e^{{\bf j} k\, x} \,{\text d}k = f(-x) . \end{equation}

 

Poisson equation


The Green function for Poisson's equation in infinite Euclidean spacen
\begin{equation} \label{Poisson.1} \Delta u = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = f({\bf x}), \qquad {\bf x} \in \mathbb{R}^n , \end{equation}
is
\begin{equation} \label{Poisson.2} G_n (r) = \begin{cases} \frac{\Gamma \left( \frac{n}{2} \right)}{2 \left( n-2 \right) \pi^{n/2}} \, r^{2-n} , & \quad n> 2, \\ \frac{1}{2\pi} \,\ln \left( \frac{1}{r} \right) , & \quad n = 2, \end{cases} \qquad r = \sqrt{x_1^2 + \cdots + x_n^2} . \end{equation}
In particular,
\[ G_3 (r) = \frac{1}{4\pi} \,\frac{1}{r} , \qquad G_4 (r) = \frac{1}{4\pi} \,\frac{1}{r^2} . \]
Then the solution of Poisson's equation \eqref{Poisson.1} becomes
\begin{equation} \label{Poisson.3} u({\bf x}) = \int_{\mathbb{R}^n} G_n \left( {\bf x} - {\bf y} \right) f({\bf y})\,{\text d}{\bf y} . \end{equation}

 

Semi-infinite domain


The Dirichlet problem for the half-plane y > 0 and, in general, for half-hyper-space xn > 0 does not have a unique solution in the space of continuous functions C². For example, the problem
\[ \Delta u = u_{xx} + u_{yy} = 0 \quad (x\in \mathbb{R}, \ y>0), \qquad u(x,0) = 0 , \]
has two solutions u ≡ 0 and u = y. Nevertheless, for problems solvable with the aid of the Fourier transform, a natural class of solutions is usually taken from the subspace of square integrable functions 𝔏². More precisely, we require that function u(x, y) has two derivatives and
\[ u, \ u_x, \ u_{xx} , \ u_{yy} \in 𝔏²\left( \mathbb{R}^2_{+} \right) , \qquad \mbox{with} \quad \mathbb{R}^2_{+} = (-\infty < x < \infty , \ y> 0) . \]

 

  1. Grigoryan, V, Parial Differential Equations, 2010, University of California, Santa Barbara.

 

Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions