Preface


This section shows that many properties of the Bessel functions of the first kind can be obtained with the aid of the Laplace transform.

Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to Part VI of the course APMA0330

Bessel functions


The Bessel equation of order n

\[ t^2 y'' (t) + t\,y' (t) + \left( t^2 - n^2 \right) y (t) =0 \]
has a solution Jn(t) that is regular at t = 0. We denote by
\[ J_n^L (\lambda ) = {\cal L}\left[ J_n (t) \right] (\lambda ) = \int_0^{\infty} e^{-\lambda \,t} J_n (t) \,{\text d}t \]
the Laplace transformation of the Bessel function. For n = 0, we have \( t\, y'' (t) + y' (t) + t\, y (t) =0 . \) Application of the Laplace transformation to the latter gives
\[ {\cal L} \left[ t\, y'' (t) \right] + {\cal L} \left[ y' (t) \right] + {\cal L} \left[ t\,y (t) \right] = 0 . \]
Mathematica knows that
LaplaceTransform[y'[t], t, s]
s LaplaceTransform[y[t], t, s] - y[0]
For other terms, we use integration by parts.
\begin{align*} {\cal L} \left[ t\, y'' (t) \right] &= \int_0^{\infty} t\, y'' (t) \, e^{-\lambda \,t} {\text d} t = \left( t\, y' (t) \, e^{-\lambda \,t} \right)_{t=0}^{\infty} - \left[ y (t) \, \frac{\text d}{{\text d}t} \left( t\, e^{-\lambda \,t} \right) \right]_{t=0}^{\infty} + \int_0^{\infty} y(t) \, \frac{{\text d}^2}{{\text d}t} \left( t\, e^{-\lambda \,t} \right) ; \\ {\cal L} \left[ t\,y (t) \right] &= \int_0^{\infty} t\,y (t) \, e^{-\lambda \,t} {\text d} t = - \frac{\text d}{{\text d}\lambda}\, \int_0^{\infty} y (t) \,e^{-\lambda \,t} {\text d} t = - \frac{\text d}{{\text d}\lambda}\,{\cal L} \left[ y (t) \right] = - \frac{\text d}{{\text d}\lambda}\,y^L (\lambda ). \end{align*} The former requires more manipulations:
D[t*Exp[-s*t], t]
E^(-s t) - E^(-s t) s t
D[t*Exp[-s*t], t, t]
-2 E^(-s t) s + E^(-s t) s^2 t
\[ {\cal L} \left[ t\, y'' (t) \right] = y(0) + \int_0^{\infty} t\,y (t) \left[ \lambda^2 t - 2 \lambda\right] e^{-\lambda \,t} {\text d} t . \]
Therefore, we get
\[ {\cal L} \left[ t\, y'' (t) \right] = y(0) - 2\lambda \, y^L (s) - \lambda^2 \frac{\text d}{{\text d}\lambda}\,y^L (s) . \]
This leads to the differential equation of the first order for the Laplace transform of y(t)
\[ \left( 1 + \lambda^2 \right) \frac{\text d}{{\text d}\lambda}\,y^L (s) + \lambda \, y^L (s) = 0 \]
because we can set y(0) = 0. The general solution of the latter is known to be
\[ {\cal L} \left[ y (t) \right] = y^L (\lambda ) = \frac{C}{\left( 1 + \lambda^2 \right)^{1/2}} , \]
where C is a n arbitrary constant that we set C = 1. Expanding the Laplace transform of the Bessel function into infinite series using binomial theorem \( \left( 1 + z \right)^{\alpha} = \sum_{k\ge 0} \binom{\alpha}{k} z^k , \) we get
\[ {\cal L} \left[ J_0 (t) \right] = \frac{1}{\left( 1 + \lambda^2 \right)^{1/2}} = \frac{1}{\lambda} \left[ 1 - \frac{1}{2\lambda^2} + \frac{1 \cdot 3}{2!\, 2^2} \, \frac{1}{\lambda^4} - \frac{1 \cdot 3 \cdot 5}{3! \,2^3} \,\frac{1}{\lambda^6} + \cdots \right] . \]
Then term-by-term integration yields
\[ J_0 (t) = 1 - \frac{(t/2)^2}{(1!)^2} + \frac{(t/2)^4}{(2!)^2} - \frac{(t/2)^6}{(3!)^2} + \cdots . \]
This power series converges for all t because the signs of successive terms alternate and the general term turns to zero. Its Laplace transform is represented by uniformly convergent integral
\[ J_0^L (\lambda ) = \int_0^{\infty} J_0 (t)\, e^{-\lambda \,t} {\text d} t = \frac{1}{\left( 1 + \lambda^2 \right)^{1/2}} \qquad \Longrightarrow \qquad \int_0^{\infty} J_0 (t)\, {\text d} t = 1 . \]
Taking the derivative, we have
\[ \frac{\text d}{{\text d}\lambda}\,J_0^L (\lambda ) = \int_0^{\infty} t\, J_0 (t) \, e^{-\lambda \,t} {\text d} t = - \frac{\lambda}{\left( 1 + \lambda^2 \right)^{3/2}}\qquad \Longrightarrow \qquad \int_0^{\infty} t\, J_0 (t) \, {\text d} t = 0 . \]
From the Bessel equation \( t\, y'' (t) + y' (t) + t\, y (t) =0 , \) we derive
\[ \int_0^{\infty} t^2 J_0 (t) \, {\text d} t = -1 . \]
Upon defining \( J_1 (t) = -J'_0 (t) , \) ,/span> we can show that this function is a solution of the Bessel equation of order 1: span class="math">\( t^2\, y'' (t) + t\,y' (t) + \left( t^2 -1 \right) y (t) =0 . \) Its Laplace transform becomes
\[ {\cal L} \left[ J_1 (t) \right] = {\cal L} \left[ - \frac{\text d}{{\text d}t} \,J_0 (t) \right] = - \left( \lambda\, J_0^L - J_0 (0) \right) = 1 - \frac{1}{\left( 1 + \lambda^2 \right)^{1/2}} . \]

For arbitrary positive integer n, we obtain the Laplace transform of Jn from the corresponding transformation of Bessel's differential equation:

\[ {\cal L} \left[ t\,\frac{\text d}{{\text d}t} \left( t\,\frac{{\text d} J_n (t)}{{\text d}t} \right) \right] + {\cal L} \left[ \left( t^2 - n^2 \right) J_n (t) \right] = 0 . \]
We have
\begin{align*} {\cal L} \left[ t\,\frac{\text d}{{\text d}t} \left( t\,\frac{{\text d} J_n (t)}{{\text d}t} \right) \right] &= \frac{\text d}{{\text d}\lambda} \,\lambda {\cal L} \left[ t\,\frac{{\text d} J_n (t)}{{\text d}t} \right] = \frac{\text d}{{\text d}\lambda} \, \frac{\text d}{{\text d}\lambda} \,J_n^L (\lambda ) , \\ {\cal L} \left[ t^2 J_n (t) \right] &= \frac{{\text d}^2}{{\text d} \lambda^2} \, J_n^L (\lambda ) . \end{align*}
Therefore, application of the Laplace transform to the Bessel equation gives the differential equation for the Laplace transform of the Bessel function:
\[ \left( 1 + \lambda^2 \right) \frac{{\text d}^2}{{\text d} \lambda^2} \, J_n^L (\lambda ) + 3\lambda \, \frac{{\text d}}{{\text d} \lambda} \,J_n^L + J_n^L (\lambda ) = n^2 J_n^L (\lambda ) . \]
Making substitution \( \phi (\lambda ) = \left( 1 + \lambda^2 \right)^{1/2} J_n^L (\lambda ) , \) we obtain
\begin{align*} \frac{{\text d}}{{\text d} \lambda} \,J_n^L &= \left( 1 + \lambda^2 \right)^{-1/2} \phi' - \lambda \left( 1 + \lambda^2 \right)^{-3/2} \phi (\lambda ) , \\ \frac{{\text d}^2}{{\text d} \lambda^2} \, J_n^L (\lambda ) &= \left( 1 + \lambda^2 \right)^{-1/2} \phi'' - 2\lambda \left( 1 + \lambda^2 \right)^{-3/2} \phi' (\lambda ) - \left( 1 + \lambda^2 \right)^{-3/2} \phi + 3\lambda^2 \left( 1 + \lambda^2 \right)^{-1/2} \phi . \end{align*}
Then for new dependent variable, we get the differential equation
\[ \left( 1 + \lambda^2 \right)^{1/2} \phi'' + \lambda \left( 1 + \lambda^2 \right)^{-1/2} \phi' = n^2 \left( 1 + \lambda^2 \right)^{1/2} \phi (\lambda ) , \]
which upon multiplication by an integrating factor \( \phi' \left( 1 + \lambda^2 \right)^{1/2} , \) results in the exact equation
\[ \left( 1 + \lambda^2 \right)^{1/2} \phi' \, \frac{\text d}{{\text d}\lambda} \left[ \phi' \left( 1 + \lambda^2 \right)^{1/2} \right] = n^2 \phi (\lambda ) \, \phi' (\lambda ) . \]
Integration yields
\[ \left[ \phi' \left( 1 + \lambda^2 \right)^{1/2} \right]^2 = n^2 \left[ \phi (\lambda ) \right]^2 + C , \]
where C is a constant of integration. Setting C = 0, we have
\[ \phi' \left( 1 + \lambda^2 \right)^{1/2} = \pm n\, \phi (\lambda ) . \]
Checking with knowing formula for J1, we have to choose minus sign and get
\[ \left( 1 + \lambda^2 \right)^{1/2} \frac{{\text d} \phi}{{\text d} \lambda} = -n\,\phi (\lambda ) \qquad\Longrightarrow \qquad \frac{{\text d} \phi}{\phi} = -n \left( 1 + \lambda^2 \right)^{-1/2} {\text d} \lambda , \]
with integral
\[ \phi (\lambda ) = C \left[ \left( 1 + \lambda^2 \right)^{1/2} - \lambda \right]^n . \]
Now we obtain explicit expression for the Laplace transform of Bessel's function of first kind (upon setting C = 1):
\[ {\cal L} \left[ J_n (t) \right] (\lambda ) = \frac{\left[ \left( 1 + \lambda^2 \right)^{1/2} - \lambda \right]^n}{\left( 1 + \lambda^2 \right)^{1/2}} , \qquad n=1,2,\ldots . \]
For large λ, we have \( \displaystyle {\cal L} \left[ J_n (t) \right] (\lambda ) \sim \frac{1}{2^n \lambda^{n+1}} + O\left( \lambda^{-n-3} \right) , \]
which leads to
\[ J_n (t) \sim \frac{t^n}{2^n n!} + O \left( t^{n+2} \right) . \]
Thus, Jn(0) = 0 (n = 1, 2, 3, ...), J'n(0) = 0 (n = 2, 3, ...), but J'1(0) = -1.

Setting λ = 0 in the Laplace transform, we derive

\[ \int_0^{\infty} J_n (t) \,{\text d}t = 1 \qquad \mbox{and} \qquad \int_0^{\infty} t^{-1} J_n (t) \,{\text d}t = \frac{1}{n} \qquad (n=0,1,2,\ldots ). \]

From the identity

\[ \frac{1}{\left( 1 + \lambda^2 \right)^{1/2} - \lambda} + \left( 1 + \lambda^2 \right)^{1/2} - \lambda = 2 \left( 1 + \lambda^2 \right)^{1/2} , \]
we obtain, upon on multiplication by \( \left[ \left( 1 + \lambda^2 \right)^{1/2} - \lambda \right]^n , \)
\[ J_{n-1}^L (\lambda ) + J_{n+1}^L (\lambda ) = 2n {\cal L} \left[ J_n (t)/t \right] \]
which, on inversion, gives the recurrence relation
\[ t \left[ J_{n+1} (t) + J_{n-1} (t) \right] = 2n\, J_n (t) . \]
Similarly, the identity
\[ Similarly, the identity
\[ \frac{1}{\left( 1 + \lambda^2 \right)^{1/2} - \lambda} - \left( 1 + \lambda^2 \right)^{1/2} - \lambda = 2 \lambda , \]
yields
\[ J_{n-1}^L - J_{n+1}^L = 2\lambda\,J_n^L \qquad\Longrightarrow \qquad J_{n-1} (t) - J_{n+1} (t) = 2\, J'_n (t) \qquad (n=1,2,3,\ldots ), \]
because \( J_n (0) =0 \ (n=1,2,\ldots ). \)

Eliminating Jn+1(t) from the above recurrence relations, we obtain

\[ t\, J_{n-1} (t) = n\,J_n (t) + t\, J'_n (t) \qquad\Longrightarrow \qquad \frac{\text d}{{\text d}t} \left[ t^n J_n (t) \right] = t^n J_{n-1} (t) . \]
On the other hand, elimination of Jn-1(t) yields
\[ \frac{\text d}{{\text d}t} \left[ \frac{J_n (t)}{t^n} \right] = - \frac{J_{n+1} (t)}{t^n} \qquad\mbox{or} \qquad \frac{1}{t}\, \frac{\text d}{{\text d}t} \left[ \frac{J_n (t)}{t^n} \right] = - \frac{J_{n+1} (t)}{t^{n+1}} . \]
Application of the above relation m times gives
\[ \left[ \frac{1}{t}\,\frac{\text d}{{\text d}t} \right]^m \left[ \frac{J_n (t)}{t^n} \right] = (-1)^m \frac{J_{n+m} (t)}{t^{n+m}} . \]
Putting n = 0 in the latter shows
\[ J_m (t) = (-1)^m \left[ \frac{1}{t}\,\frac{\text d}{{\text d}t} \right]^m J_0 (t) , \qquad m=1,2,\ldots . \]
  1. Chorlton, F., Studies in Bessel functions via Laplace transforms, International Journal of Mathematical Education in Science and Technology, 1998, Vol. 29, No. 3, pp. 437--473; doi: https://doi.org/10.1080/0020739980290312
  2. Titchmarsh, E.C., The Theory of Functions, 1939, second edition, Oxford: Oxford University Press.

 

Return to Mathematica page
Return to the main page (APMA0330)
Return to the Part 1 (Plotting)
Return to the Part 2 (First Order ODEs)
Return to the Part 3 (Numerical Methods)
Return to the Part 4 (Second and Higher Order ODEs)
Return to the Part 5 (Series and Recurrences)
Return to the Part 6 (Laplace Transform)
Return to the Part 7 (Boundary Value Problems)