Return to computing page for the second course APMA0340

Return to Mathematica tutorial for the second course APMA0340

Return to the main page for the course APMA0330

Return to the main page for the course APMA0340

Return to Part II of the course APMA0330

## Glossary

# Integrating factors as functions of independent variable

Suppose that an integrating factor depends only on the independent variable only. Then \( \mu = \mu (x) \) satisfies the differential equation

\[
\frac{\partial}{\partial y} \left( \mu \,M(x,y)\right) = \frac{\partial}{\partial x} \left( \mu \,N(x,y)\right)
\qquad \Longleftrightarrow \qquad \mu \, \frac{\partial M(x,y)}{\partial y} = \frac{{\text d} \mu}{{\text d} x} \, N(x,y) + \mu \,
\frac{\partial N(x,y)}{\partial x} .
\]

Then we get the equation
\[
\frac{1}{\mu} \,\frac{{\text d} \mu}{{\text d} x} = \frac{M_y - N_x}{N(x,y)} \qquad \mbox{must be a function of $x$ only}
\]

because the left-hand side is a function of *x*. In this case, variable are separated and upon integration, we obtain

\[
\mu (x) = \exp \left\{ \int \frac{M_y - N_x}{N(x,y)} \, {\text d} x \right\} .
\]

**Example:**

PolarPlot[{Exp[Cos[x]] - 2*Cos[4*x], x}, {x, 0, 2*Pi}]

■

Return to Mathematica page

Return to the main page (APMA0330)

Return to the Part 1 (Plotting)

Return to the Part 2 (First Order ODEs)

Return to the Part 3 (Numerical Methods)

Return to the Part 4 (Second and Higher Order ODEs)

Return to the Part 5 (Series and Recurrences)

Return to the Part 6 (Laplace Transform)

Return to the Part 7 (Boundary Value Problems)