Sigal Gottlieb

Associate Professor
Mathematics Department
Umass Dartmouth


Jan S. Hesthaven, Sigal Gottlieb, David Gottlieb Spectral Methods for Time Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics (No. 21) Cambridge University Press (2006). ISBN 0521792118

Book Chapter
A. Gelb and S. Gottlieb, The Resolution of the Gibbs Phenomenon for Fourier Spectral Methods. Chapter 7 in Advances in The Gibbs Phenomenon with Detailed Introduction Abdul J. Jerri, Editor, Sampling Publishing, Potsdam, New York (2007), ISBN 0967301-0-8.

Peer Reviewed Journal Publications
S. Gottlieb and J.-H. Jung, On the Numerical Implementation of spectral Galerkin Penalty Methods. Submitted to Communications in Computational Physics
D. Ketcheson, C. Macdonald, and S. Gottlieb, Optimal implicit strong stability preserving Runge-Kutta methods. Submitted to Applied Numerical Mathematics
C. Macdonald, S. Gottlieb, and S. J. Ruuth, A numerical study of diagonally split Runge--Kutta methods for PDEs with discontinuities. Submitted to Journal of Scientific Computing
R. Archibald, A. Gelb, S. Gottlieb and J. Ryan, One-sided post-processing for the Discontinuous Galerkin Method Using ENO-type stencil choice and the Edge Detection Method. Journal of Scientific Computing vol. 28 (2006), pp.167-190.
S. Gottlieb, D. Gottlieb and C.-W. Shu, Recovering High Order Accuracy in WENO Computations of Steady State Hyperbolic Systems Journal of Scientific Computing vol. 28 (2006), pp.307-318.
S. Gottlieb and S. J. Ruuth, Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations. Journal of Scientific Computing vol. 27 (2006), pp. 289-304.
S. Gottlieb, J. S. Mullen and S. J. Ruuth, A fifth order flux-implicit WENO method. Journal of Scientific Computing vol. 27 (2006), pp. 271-288.
S. Gottlieb, On High Order Strong Stability Preserving Runge-Kutta and Multi Step Time Discretizations. Journal of Scientific Computing vol. 25 (2005), pp. 105-128.
D. Gottlieb and S. Gottlieb, Spectral Methods for Compressible Reactive Flows Comptes Rendus Mecanique vol. 333 (2005), pp. 3-16.
D. Gottlieb and S. Gottlieb, Spectral Methods for Discontinuous Problems. Proceedings 20th biennial Conference on Numerical Analysis, D.F. Griffiths and G. A. Watson, editors. University of Dundee Numerical Analysis Report NA/217 (2003)}.
S. Gottlieb and L.-A. J. Gottlieb, Strong Stability Preserving Properties of Runge-Kutta Time Discretization Methods for Linear Constant Coefficient Operators Journal of Scientific Computing vol 18 (1) (2003), pp. 89-109.
S. Gottlieb, C.W. Shu and E. Tadmor, Strong Stability Preserving High Order Time Discretization Methods SIAM review vol. 43 no. 1 (2001), pp. 89-112
P.F. Fischer and S. Gottlieb, Solving A x = b using a modified conjugate gradient method based on the roots of A Journal of Scientific Computing vol. 15 no. 4 (2000), pp.441-456.
S. Gottlieb and C.W. Shu, Total Variation Diminishing Runge-Kutta Schemes Mathematics of Computation vol. 67 (1998), pp.73-85.
P. F. Fischer and S. Gottlieb A Modified Conjugate Gradient Method for the Solution of A x =b Journal of Scientific Computing vol. 13 no. 2 (1998), pp.173-183.
C.R. Johnson, I.M. Spitkovsky and S. Gottlieb Inequalities Involving the Numerical Radius. Linear and Multilinear Algebra vol. 37 (1994), pp.13-24.

Refereed Conference Proceedings
S. Gottlieb and J. S. Mullen, An Implicit WENO Scheme for Steady-State Computation of Scalar Hyperbolic Equations in Computational Fluid and Solid Mechanics 2003 (ed. K.J. Bathe)} (2003)
U. Qidwai and S. Gottlieb, An efficient hole-filling algorithm for c-scan enhancement. Review of the progress in Quantitative Nondestructive Evaluation (RQNDE) , Maine, 2001.

Book Reviews
S. Gottlieb and D. Gottlieb, Review of ``Spectral Methods for Incompressible Visocous Flow'' by Roger Payret, SIAM Review vol. 45 (2003), pp.147-148
D. Gottlieb and S. Gottlieb, Review of ``High-Order Methods for Incompressible Fluid Flow'' by M.O. Deville, P.F. Fischer and E.H. Mund., Mathematics of Computation vol. 73 (2003), pp. 1039-1040

Back to the CFM Home Page