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A Fifth Order Flux Implicit WENO Method
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The weighted essentially non-oscillatory (WENO) method is an excellent spatial
discretization for hyperbolic partial differential equations with discontinuous
solutions. However, the time-step restriction associated with explicit methods
may pose severe limitations on their use in applications requiring large scale
computations. An efficient implicit WENO method is necessary. In this paper,
we propose a prototype flux-implicit WENO (iWENO) method. Numerical
tests on classical scalar equations show that this is a viable and stable method,
which requires appropriate time-stepping methods. Future study will include
the examination of such methods as well as extension of iWENO to systems
and higher dimensional problems.
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1. INTRODUCTION

Explicit weighted essentially non-oscillatory (WENO) methods have proved
very popular in numerical simulations of discontinuous solutions of hyper-
bolic problems. However, the numerical CFL condition leads to time-step
restrictions which may be prohibitive for large scale computations. This
is a problem frequently seen in finite difference methods and is dealt
with by treating such methods implicitly. However, there are significant
logistical problems in constructing a stable and efficient implicit WENO
method. WENO is highly non-linear, even for a linear problem, and the
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computational cost required for an implicit step, both in the line searches
and (if desired) in the computation of the Jacobian, is prohibitive. We
alleviate these problems by considering a prototype flux-implicit WENO
(iWENO) method. In this paper we describe the development of the new
iWENO method, validate it and test it for accuracy and stability on clas-
sical scalar test cases, and sketch out future directions for the study of the
iWENO method.

2. THE EXPLICIT WENO METHOD

To approximate, in a physically correct way, ([6]) the solution to a
conservation law of the form

ut +f (u)x =0,

we use a conservative finite difference scheme

ut =− 1
∆x

(
f̂

j+ 1
2
− f̂

j− 1
2

)
.

The term f̂
j+ 1

2
= f̂ (uj−k, . . . , uj+l ) is the numerical flux, and the

points xj−k, . . . , xj+l constitute the stencil. To be a reasonable approxi-
mation, the numerical flux must be (at least) Lipschitz continuous and
consistent with the physical flux f , i.e. f̂ (u, . . . , u)=f (u). The numerical
flux determines the numerical method and its properties. Any differences
between conservative numerical semi-discretizations are a result of differ-
ences in the numerical flux.

ENO ([3, 4, 9]) schemes search for the locally smoothest stencil and
use that stencil to calculate the numerical fluxes, in order to prevent the
shock from being crossed. On the left of the shock and the right of
the shock we have smooth regions, and in those regions linear stabil-
ity is enough to ensure non-linear stability. Oscillations arise when we
take points on opposite sides of the shock to evaluate the derivative at
a given point. These oscillations at the shock location propagate to the
smooth regions, destroying the stability of the solution. The idea behind
ENO schemes is stencil switching in order to eliminate oscillations. The
ENO scheme evaluates the smoothness of several stencils near the point
of interest, and picks the smoothest stencil for evaluating the derivative at
that point. This means that the method should avoid picking stencils that
cross the shock, and so avoid stability problems. Liu et al. [7] improved
upon the ENO method and developed the WENO method. Each stencil
is assigned a weight, which depends on its smoothness. Then all approxi-
mations from all the candidate stencils are summed, each with the weight
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assigned to it. The weights are chosen so that in smooth regions we obtain
higher order accuracy whereas near discontinuities the ENO scheme is imi-
tated by assigning near-zero weights to the stencils that contain discon-
tinuities. To get an rth order ENO scheme, a total of 2r − 1 points are
examined for each flux. Since the WENO scheme uses all the candidate
stencils, a clever choice of weights [5] results in a WENO scheme which is
of order 2r −1 in smooth regions [8].

To solve

ut +f (u)x =0

we approximate the spatial derivative using WENO L(u) = −f (u)x , and
then use a time-stepping method to solve the resulting system of ODEs.
We split the flux into the positive and negative parts

f (u)=f +(u)+f −(u).

This can be accomplished in a variety of ways. In this paper we consider
the Lax–Friedrichs flux splitting

f +(u)= 1
2

(f (u)+mu) , f −(u)= 1
2

(f (u)−mu) ,

where m=max |f ′(u)|. In this way we ensure that df +
du

�0 and df −
du

�0.
To calculate the numerical fluxes f̂ +

j+ 1
2

and f̂ −
j+ 1

2
, we begin by calcu-

lating the smoothness measurements to determine if a shock lies within the
stencil. For our fifth order scheme, these are:

IS+
0 = 13

12

(
f +

j−2 −2f +
j−1 +f +

j

)2 + 1
4

(
f +

j−2 −4f +
j−1 +3f +

j

)2
,

IS+
1 = 13

12

(
f +

j−1 −2f +
j +f +

j+1

)2 + 1
4

(
f +

j−1 −f +
j+1

)2
,

IS+
2 = 13

12

(
f +

j −2f +
j+1 +f +

j+2

)2 + 1
4

(
3f +

j −4f +
j+1 +f +

j+2

)2

and

IS−
0 = 13

12

(
f −

j+1 −2f −
j+2 +f −

j+3

)2 + 1
4

(
3f −

j+1 −4f −
j+2 +f −

j+3

)2
,

IS−
1 = 13

12

(
f −

j −2f −
j+1 +f −

j+2

)2 + 1
4

(
f −

j −f −
j+2

)2
,

IS−
2 = 13

12

(
f −

j−1 −2f −
j +f −

j+1

)2 + 1
4

(
f −

j−1 −4f −
j +3f −

j+1

)2
.
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Next, we use the smoothness measurements to calculate the stencil weights

α±
0 = 1

10

(
1

ε + IS±
0

)2

, α±
1 = 6

10

(
1

ε + IS±
1

)2

, α±
2 = 3

10

(
1

ε + IS±
2

)2

and

ω±
0 = α±

0

α±
0 +α±

1 +α±
2

, ω±
1 = α±

1

α±
0 +α±

1 +α±
2

, ω±
2 = α±

2

α±
0 +α±

1 +α±
2

.

Finally, the numerical fluxes are

f̂ +
j+ 1

2
= ω+

0

(
2
6
f +

j−2 − 7
6
f +

j−1 + 11
6

f +
j

)
+ω+

1

(
−1

6
f +

j−1 + 5
6
f +

j + 2
6
f +

j+1

)

+ω+
2

(
2
6
f +

j + 5
6
f +

j+1 − 1
6
f +

j+2

)

and

f̂ −
j+ 1

2
= ω−

2

(
−1

6
f −

j−1 + 5
6
f −

j + 2
6
f −

j+1

)
+ω−

1

(
2
6
f −

j + 5
6
f −

j+1 − 1
6
f −

j+2

)

+ω−
0

(
11
6

f −
j+1 − 7

6
f −

j+2 + 2
6
f −

j+3

)
.

Thus, each one of these can be written as:

f̂ +
j+ 1

2
=

4∑
i=0

q+
i (j)f +

j−2+i
and f̂ −

j+ 1
2
=

4∑
i=0

q−
i (j)f +

j−1+i
.

Since each of these expressions is simply a weighted sum of the numerical
fluxes, we may rewrite

f +(u)x ≈ 1
∆x

(
f̂ +

j+ 1
2
− f̂ +

j− 1
2

)
=−W+(u)f +(u)

and

f −(u)x ≈ 1
∆x

(
f̂ −

j+ 1
2
− f̂ −

j− 1
2

)
=−W−(u)f −(u),

for matrices of weights W+(u) and W−(u), defined by a trivial rearrange-
ment and differencing of the qis. Thus, we can write the WENO approxi-
mation

L(u)≈−f (u)x,

where L(u)=W+(u)f +(u)+W−(u)f −(u).
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3. COMPLEXITIES OF IMPLICIT WENO METHODS

Often, a finite difference method can be made implicit in a very sim-
ple and straightforward way. While the WENO method may be viewed, in
some sense, as a finite difference method, the non-linear weights imply that
each point in space and time will use a different finite difference discreti-
zation. In other words, in standard finite difference methods the differen-
tiation matrices are constant, while in WENO, they depend on un. The
primary hurdle in developing an efficient implicit WENO method is the
high computational cost associated with computing the highly non-linear
weights. Approximating a derivative using explicit WENO requires costly
computations of the weights, and a fully implicit WENO requires sig-
nificantly more of these computations within the non-linear solver. This
non-linear solver is typically Jacobian based, and the expensive step is usu-
ally the inversion of the Jacobian. However, in the case of implicit WENO,
the mere computation of the Jacobian matrix is very costly. Repeated com-
putations of the Jacobian are necessary for each line search, and this cost
can become prohibitive. This problem could be alleviated by choosing a
Jacobian-free non-linear solver; however, this approach could lead to prob-
lems if the Jacobian is approximated using differencing which crosses the
shock. The WENO method is based on the premise that to preserve sta-
bility, we used stencils which are weighted heavily in a non-linear manner
on one side of the shock or the other. Therefore, the Jacobian-free method
could lead to instability by violating this rule.

These problems were encountered in [1], where an implicit WENO
was developed for direct convergence to steady state. In that case, there
was no time-stepping, only an implicit solution of the steady state equa-
tions. This class of methods solved the steady-state problem

f (u)x =0

by using the WENO approximation to obtain

L(u)=0.

This system of equations was solved iteratively, using a damped Newton
method. The experience gained from that approach indicated that in the
non-linear solver, the computation of the WENO weights and the analytic
computation of the Jacobian was extremely slow, due to the non-linearity
of WENO.

The idea behind the flux-implicit iWENO method is to treat the
differentiation matrices explicitly and the flux implicitly. In this way, each
implicit-solver iWENO step has a computational cost equivalent to that
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in a standard finite difference scheme. We anticipate that the combination
of the flux-implicit approach and the relaxed time-step restriction of the
implicit solver will make the implicit method cost-effective relative to the
explicit method.

4. THE FLUX-IMPLICIT APPROACH

In the following, we treat the scalar conservation law

ut +f (u)x =0

as described above, where the spatial differencing is accomplished via the
WENO approximation

L(u)=W+(u)f +(u)+W−(u)f −(u).

We suggest at this point thinking of the iWENO operator as a product of
two operators, W(u)F (u). Clearly, that is not exactly correct in this con-
text. However, for simplicity, we will use this formulation at present, and
discuss the generalization later. We consider W(u) to be the differentiation
matrix containing the WENO weights and F(u) to be some combination
of the numerical fluxes.

A simple first order prototype of the flux implicit iWENO method
can be viewed as a predictor–corrector scheme:

ũ = un +∆tW(un)F (un),

un+1 = un +∆tW(ũ)F (un+1).

The quantity ũ is computed in order to predict the weights in W . The
value of ũ is obtained by an explicit forward-Euler time step. The correc-
tor step is then an implicit Euler method, which is implicit only in F , but
not in the highly non-linear W . Both the predictor and the corrector steps
are of the same order; however, the use of the implicit corrector step may
allow a larger time step for stability than a purely explicit method would
allow. Now the implicit step in iWENO is of the same cost as the implicit
step of any usual finite difference scheme. However, the matrix W may not
have the nice features, such as symmetry, associated with standard finite
difference methods.

In general, this predictor–corrector approach involves using a known
explicit method (either Runge–Kutta or multi step) of the desired order to
evaluate ũ, and then calculate the matrix of weights W(ũ). To step forward
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in time, we use any implicit method of the desired order, but we now treat
W(ũ) as a constant matrix.

A flux-implicit approach which does not involve a separate predictor
is also possible. For example, the simplest first order prototype would be

un+1 = un +∆tW(un)F (un+1).

In this case, the weights are not predicted at time level tn+1, but rather the
weights at time tn are used. There is the danger, in this type of method,
that the stencil determined by the weights at time tn will cross the shock
at time tn+1 and lead to instability.

To extend these ideas, one may consider any M-stage Runge–Kutta
method of the form

u(0) = un,

u(l) =
l∑

j=0

αlju
(j) +∆t

l∑
j=0

βljW(u(ij ))F (u(j)),

where each ij < l and l =1, . . . ,M, un+1 =u(M).

As long as W(·) is based on an already-computed quantity, this method
has the advantages of a flux-implicit iWENO. The constants αmj and βmj

need to be chosen carefully to ensure the method is of the correct order.
The formulations of the methods in this paper are such that the gen-

eral case

L(u)=W+(u)F+(u)+W−(u)F−(u)

can be implemented as easily as the simplified case L(u) = W(u)F (u),
by simply adding in the corresponding terms. More complicated formula-
tions are possible, however, one must confirm that the general case can be
implemented.

In the numerical section, we solve linear and non-linear scalar equa-
tions with several types of predictor–corrector iWENO methods. The aim
of these implicit methods is to raise the value of the time step which is
allowed for stability, while reducing the cost of the implicit WENO step
to that of a standard implicit finite difference scheme.

5. NUMERICAL RESULTS

For the numerical experiments, we considered two classical scalar test
cases, and time-stepping methods of order up to three.
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Example 1. The first set of examples is a linear wave equation

ut +ux =0, 0�x �2

with periodic boundary conditions and two sets of initial conditions. We
use the smooth initial condition u(x,0)= sin(πx) to verify the spatial and
temporal order of the schemes, and the step-function initial condition

u(x,0)=
{

1 if 0�x <1
0 otherwise

to observe the effect of iWENO on a discontinuous problem.

1. We begin with two first order methods:

(1a) A first order flux-implicit Euler method where the
weights are computed explicitly:

un+1 = un +∆tW(un)F (un+1)

and

(1b) A method consisting of an explicit first order forward
Euler predictor and first order implicit Euler corrector:

ũ = un +∆tW(un)F (un),

un+1 = un +∆tW(ũ)F (un+1).

Both methods show first order accuracy in time using the smooth
initial condition. We tested the stability of the method by solv-
ing the linear equation with step-function initial conditions up to
final time Tf = 5.0 and for number of points N up to 200. Both
methods were stable for all values of ∆t = c(∆x/m), for c � 10
and m=max |f ′(u)|. It became apparent that the methods would
continue to be stable as we raise the step size, since both meth-
ods are very diffusive and the step function became increasingly
smeared as ∆t became larger.
The first method did not use a predictor to approximate the
weights for the implicit method. We feared this may lead to insta-
bility because of the possibility that the stencil defined at time tn

will cross the shock at time tn+1. However, in our computations
we observe that both methods behave very much the same. We
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attribute this to the strong diffusivity of the methods which, in
convecting the discontinuous initial condition, smeared it to the
extent that in only a few time steps the shock was completely
smeared so that the solution profile was essentially smooth.

2. We proceed with the second order methods:

(2a) A first order explicit Euler predictor and a second
order implicit Crank–Nicolson corrector ([2]):

ũ = un +∆tW(un)F (un),

un+1 = un + 1
2
∆tW(un)F (un)+ 1

2
∆tW(ũ)F (un+1).

and

(2b) A second order explicit Runge–Kutta predictor [9] and
second order implicit Crank–Nicolson corrector [2]:

u(1) = un +∆tW(un)F (un),

ũ = 1
2
un + 1

2
u(1) + 1

2
∆tW(u(1))F (u(1)),

un+1 = un + 1
2
∆tW(un)F (un)+ 1

2
∆tW(ũ)F (un+1) .

and

(2c) A first order flux-implicit Euler predictor and a second
order implicit Crank–Nicolson corrector [2]:

ũ = un +∆tW(un)F (ũ),

un+1 = un + 1
2
∆tW(un)F (un)+ 1

2
∆tW(ũ)F (un+1).

Although the first and third method use only a first order pre-
dictor, the predicted terms enter into the final formula multiplied
by ∆t , and thus we can afford to use a predictor of one order
less than the corrector. Accuracy tests on the linear problem with
smooth initial conditions demonstrate that the iWENO method is
indeed fifth order in space (tested with method(2c), see Table I)
and that methods (2a), (2b) and (2c) give very similar results and
that these implicit methods are second order in time (Table II).
In terms of stability considerations, the two methods (2a) and (2b)
behave similarly. Both methods show non-oscillatory results for
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Table I. Verification of the Spatial Order of
Accuracy for of iWENO, in Conjunction with

Method (2c)

L2 error order

N =20 1.18×10−5

N =30 1.41×10−6 5.24
N =40 2.98×10−7 5.40
N =60 3.70×10−8 5.14
N =80 8.55×10−9 5.09

(∆t =0.0001 to final time Tf =0.01).

Table II. L2 Errors and Order of Accuracy for the Second Order Methods with
∆t =0.4∆x, Computed to Final Time Tf =1.0

Method 2a Method 2b Method 2c

Error Order Error Order Error Order

N =20 3.83×10−3 3.83×10−3 3.83×10−3

N =40 8.51×10−4 2.17 8.51×10−4 2.17 8.51×10−3 2.17
N =60 3.63×10−4 2.10 3.63×10−4 2.10 3.63×10−4 2.10
N =80 1.99×10−4 2.08 1.99×10−4 2.08 1.99×10−4 2.08
N =100 1.25×10−4 2.07 1.25×10−4 2.07 1.25×10−4 2.07
N =120 8.63×10−5 2.06 8.63×10−5 2.06 8.63×10−5 2.06

CFL values c < 1/2. Interestingly, the methods develop an oscil-
lation on either side of the shock for CFL values 1/2 � c � 1.
However, in tests up to final time Tf = 4.0 and number of points
N = 200, this oscillation remains the same or decays and does not
develop into instability (Fig. 1). As the figure shows, the oscillation
in method (2b) is smaller than that of method (2a) and decays over
time. The third method (2c), which features a flux-implicit predic-
tor, is more stable—no oscillation appears for values c < 1. Insta-
bility is observed for all three methods at CFL values c>1.
A comparison with the explicit second order Runge–Kutta
method SSP(2,2) [9]:

u(1) = un +∆tW(un)F (un),

un+1 = 1
2
un + 1

2
u(1) + 1

2
∆tW(u(1))F (u(1))

shows that this method is stable for values of c < 1/2, and
becomes gradually unstable afterwards. For this example, using
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0 1 20 1 2

0

0.5

1

0

0.5

1

Fig. 1. Oscillation forms on either side of the shock. Algorithms (2a) on left and (2b) on
right. Using ∆t = ∆x, for N = 100. Note that the oscillation in method (2b) is smaller than
that of method (2a), and decays over time. The codes were run for 40 steps (dashed line), 120
steps (dotted line) and 160 steps (solid line).

the iWENO method with these implicit second order methods
does not confer a significant advantage in terms of allowed ∆t

for stability. Figure 2 shows a comparison of all four methods
for c = 1/2, c = 3/4, c = 1, and c = 5/4, with N = 40 points, with
∆t = c∆x and convected over 100 time steps.

3. Finally, we consider third order methods:

(3a) A second order explicit Adams–Bashforth predictor and
a third order implicit Adams–Moulton corrector [2]:

ũ = un + 3
2
∆tW(un)F (un)− 1

2
∆tW(un−1)F (un−1),

un+1 = un +∆t

(
5

12
W(ũ)F (un+1)+ 8

12
W(un)F (un)

− 1
12

W(un−1)F (un−1)

)
.

and
(3b) A second order extrapolated BDF predictor and a

third order BDF corrector [2]:

ũ = 4
3
un − 1

3
un−1 +∆t

(
4
3
W(un)F (un )

−2
3
∆tW(un−1)F (un−1)

)
,

un+1 = 18
11

un − 9
11

un−1 + 2
11

un−2 + 6
11

∆tW(ũ)F (un+1) .
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Fig. 2. Linear problem: algorithms 2a (dashed line), 2b (dash-dot), 2c (solid line), and
SSP(2,2) (dotted line) using ∆t = c∆x, for N = 40, over 100 time steps. Top left: c = 0.5, top
right: c=0.75, bottom left: c=1., bottom right: c=1.25 (instability).

Accuracy tests show, as expected, third order accuracy
(Table III). The results from these methods were very
interesting (Fig. 3). Method 3b was stable for CFL val-
ues c�0.5, but showed oscillations or signs of instabil-
ity for larger values. Method 3a was stable for c�1.
In comparison,

(3c) the explicit third order SSP Runge–Kutta [9]:

u(1) = un +∆tW(un)F (un),

u(2) = 3
4
un + 1

4
u(1) + 1

4
∆tW(u(1))F (u(1)),

un+1 = 1
3
un + 2

3
u(2) + 2

3
∆tW(u(2))F (u(2))

was also stable for c � 1. A comparison of the three
methods (3a), (3b) and (3c) is presented in Fig. 3.



A Fifth Order Flux Implicit WENO Method 283

Table III. L2 Errors and Order of Accuracy for the Third
Order Methods (3a) and (3b) with ∆t = 1

2 ∆x, Computed to
Final Time Tf =1.0

Method 3a Method 3b

Error Order Error Order

N =20 8.80×10−4 7.58×10−4

N =40 1.30×10−5 6.07 1.11×10−4 2.76
N =60 3.83×10−6 3.01 3.66×10−5 2.74
N =80 2.10×10−6 2.08 1.60×10−5 2.86
N =100 1.21×10−6 2.48 8.40×10−6 2.91
N =120 7.45×10−7 2.67 4.92×10−6 2.93

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

0

0.5

1

0 1 2

–0.5

0

0.5

1

Fig. 3. Linear problem: algorithms 3a (solid line), 3b (dashed line) and 3c (dotted line),
using ∆t =c∆x, for N =100, over 40 time steps. Top left c=0.5 all methods are stable. Top
right c = 0.75 methods 3a and 3c are stable. Bottom left c = 1.0, method 3a shows an oscil-
lation near the shock, method 3b is unstable, and method 3c is starting to exhibit excessive
smearing. Bottom right c=1.5 all methods are unreliable.
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(3d) the explicit third order Runge–Kutta predictor and
implicit third order Adams–Moulton corrector:

u(1) = un +∆tW(un)F (un),

u(2) = 3
4
un + 1

4
u(1) + 1

4
∆tW(u(1))F (u(1)),

ũ = 1
3
un + 2

3
u(2) + 2

3
∆tW(u(2))F (u(2)),

un+1 = un +∆t

(
5

12
W(ũ)F (un+1)

+ 8
12

W(un)F (un)− 1
12

W(un−1)F (un−1)

)
.

gave significantly more stable results. Figure 4 shows a
comparison of methods (3a), (3c) and (3d). It is evi-
dent that in terms of computational cost the explicit
SSP Runge–Kutta still outperforms all three of the
implicit methods.

The linear test cases demonstrated the spatial order of accuracy of the
iWENO and the time-accuracy of the time-stepping methods. Although
the linear test cases showed that iWENO is reliable, the stability results
were heavily dependent on the time-stepping method, and were discourag-
ing. We did not observe any significant advantages of the implicit methods
in terms of step size for order two or higher. The non-linear example pro-
vides a clearer picture of the need for appropriate time stepping:

Example 2. The second example is the non-linear Burgers’ equation

ut +
(

u2

2

)
x

=0

with periodic boundary conditions, and initial condition u(x,0) = 1
2 +

1
4 sin(πx).

This problem was solved using methods (1b), (2a), (2b) and (2c)
above. In the case of a non-linear equation, a non-linear solver must be
used to solve the system resulting from the implicit step. Whenever possi-
ble we use a predicted value ũ as the initial guess for the non-linear solver.
This is possible in the case of (1b), (2a) and (2b). However, in the case
of (2c), the predictor itself is implicit and requires an initial guess. In this
case we use un as the initial guess for the solver used for ũ, and ũ as the
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Fig. 4. Linear problem: algorithms 3a (dotted line), 3c (dashed line), 3d (solid line), using
∆t = c∆x, for N =100, over 20 time steps. Left c=0.5, middle c=1.0, right c=1.5.

initial guess for the solver used for un+1. Although there is the possibility
that the non-linear solver for ũ will not converge due to the initial guess
crossing the shock, this was not observed in our simulations.

We used the first order time-stepping method, consisting of the first
order forward Euler predictor and first order implicit Euler corrector
(1b) to solve the non-linear equation. As for the linear example, this
implicit solver is stable for all step sizes ∆t which we tested (correspond-
ing to a CFL value up to c = 10). We compared these results to those
obtained from using an explicit forward Euler method for time-stepping.
As expected, the explicit solver is only stable for values c � 0.5. The first
order implicit method is extremely stable and extremely diffusive; the price
of the stability is the smearing of the solution. The implicit methods
(2a), (2b), and (2c) are stable for values c � 1. The allowable timestep
is doubled by using the implicit methods; however, when considering the
cost of the implicit methods it is evident that they do not outperform
the explicit Runge–Kutta method SSP(2,2). These numerical results indi-
cate that the flux-implicit iWENO is a viable approach, and that the first
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order method performs as desired. Further work is required to find higher
order time-stepping method which preserves the stability properties of the
iWENO coupled with implicit Euler.

6. CONCLUSIONS AND FUTURE DIRECTIONS

The main conclusion of this paper is that the success or failure of the
flux-implicit iWENO spatial discretization depends heavily on the time-
discretization used, as well as the numerical problem. When coupled with
an appropriate time discretization, the iWENO method performs beauti-
fully. Thus, we can turn our attention in future work to the task of find-
ing an efficient and stable combination of time-discretization and iWENO.
There is an inevitable trade-off between stability and diffusion, and a good
balance may be difficult to strike.

In this context, future work shall consider different choices of
predictor–corrector pairs, the effect of strong-stability-preserving methods,
and diagonally split Runge–Kutta methods. Further study is also needed to
evaluate the choice of non-linear solvers. In this work, we used MATLAB’s
Jacobian based solver. It is possible to let MATLAB approximate the Jaco-
bian using finite differences, however the stability implications of such a
procedure are unclear and need to be examined closely. Finally, based on
our positive results with scalar one dimensional problems, the iWENO idea
clearly should be extended to systems and multidimensional problems.
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