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Abstract. In this paper, we consider high order multi-domainpenalty spectral Galerkin
methods for the approximation of hyperbolic conservation laws. This formulation has
a penalty parameter which can vary in space and time, allowing for flexibility in the
penalty formulation. This flexibility is particularly adventageous for problems with
an inhomogeneous mesh. We show that the discontinuous Galerkin method is equiv-
alent to the multidomain spectral penalty Galerkin method with a particular penalty
term. The penalty parameter has an effect on both the accuracy and stability of the
method. We examine the numerical issues which arise in the implementation of high or-
der multi-domain penalty spectral Galerkin methods. The coefficient truncation method
is proposed to prevent the rapid error growth due to round-off errors when high order
polynomials are used. Finally, we show that an inconsistent evaluation of the integrals
in the penalty method may lead to growth of errors. Numerical examples for linear and
nonlinear problems are presented.
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1 Introduction

Polynomial Galerkin methods are widely used for the numerical solution of hyperbolic
conservation laws [1, 2, 9, 10]. These methods seek a polynomial approximation of the
solution for which the projected residual of the differential equation to the polynomial
space vanishes. Two such classes of methods are the spectral Galerkin methods (sGM)
and the discontinuous Galerkin methods (dGM). Traditionally, sGM have used high order
polynomials on one element, while dGM use lower order polynomials on many elements.
However, multi-domain sGM exist and are known as spectral element methods. In order to
increase the accuracy of the approximation, these methods can use more smaller elements
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(h-refinement) or raise the degree of the polynomial in each element (p refinement). High
order polynomials have numerical issues such as sensitivity to roundoff errors, so it is
important to carefully study their effects on accuracy and stability when used in multi-
domain penalty spectral Galerkin methods.

The penalty formulation penalizes the boundary or interface conditions at each element
by introducing a penalty term which includes a penalty parameter. This penalty parameter
confers a great deal of flexibility on the problem, as it can change over space and time. We
demonstrate the advantages of the flexibility in the choice of penalty parameter, especially
in the case where an inhomogeneous grid system is used. An inhomogeneous grid can be
due to a difference in element size or in polynomial order at each element, but this type
of grid is subject to non-physical reflecting or dispersive modes which may appear in the
solution. By modifying the penalty conditions near the grid discontinuity, we show that
the sGM can reduce the non-physical modes while computing the other elements efficiently
and accurately. We further consider the effects of the penalty method on the stability and
accuracy. In this context, we show that the dG formulation is a special case of the penalty
multi-domain sGM.

Next we discuss the effect of round-off errors for high order sGMs. These round-off
error effects can arise from the the ill-conditioned mass matrix for high order polynomials,
and the numerically inconsistent evaluations of the mass matrix and the load vector.
The coefficient truncation method is introduced to reduce round-off errors. This method
truncates high order coefficients which do not show rapid decay in the solution of the
linear system, and prevents error growth.The second round-off error effect we explore is
the error resulting from inconsistent evaluations of the two sides of the equation. While
the right-hand-side of the linear system is evaluated by quadrature, the left-hand side
can usually be computed exactly. In the case of orthogonal polynomials, this matrix is a
diagonal matrix which simplifies the process of solving the system. However, computing
one side of the equation exactly and the other by quadrature results in inconsistency errors
which rise when the polynomial order is raised. We show these numerical inconsistency
errors, and their dependence on the penalty parameter, in numerical computations.

The paper is structured as follows. In Section 2, we formulate the multidomain penalty
sGM and demonstrate the effect of the penalty terms on the stability and accuracy. The
penalty sGM with non-homogeneous grid and the flexibility of the penalty methods are
discussed. The equivalence of the dGM to the sGM is shown as well. In Section 3, the
effect of round-off errors on the high order sGM is discussed. The coefficient truncation
method is introduced and numerical consistency is studied for the reduction of round-off
errors. In Section 4, we summarize our results and discuss future research directions.

2 Penalty Spectral Galerkin method

In this paper, we consider the one-dimensional hyperbolic conservation law

ut+f(u)x =0, x∈Ω=[−1,1], u : [−1,1]×R+→R,t>0, (2.1)
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with the initial condition u(x,0)=g(x), and boundary conditions B±u(x,t)=h±(t), x∈
∂Ω, where B± are the boundary operators at the domain boundary ∂Ω. For simplicity, we
will consider mainly the case f ′(u)≥0, for which the boundary condition is u(−1,t)=h+(t).
In practice, this case can be easily generalized using the flux splitting and treating each
flux with the appropriate boundary condition.

In 1988, Gottlieb and Funaro introduced a penalty boundary condition for the spectral
collocation approximation of Eq. (2.1) [4] and there have has been much research on the
penalty collocation methods [3,5–8]. The main motivation of penalty boundary conditions
for collocation methods is that the differential equation is satisfied exactly at a given
set of collocation points, while at the boundaries we add a term which penalizes for
the approximation’s distance from the prescribed boundary conditions to make the given
equations satisfied asymptotically at any points. The numerical approximation is the
polynomial U(x,t)=

∑m
k=0bk(t)Pk(x), where Pk(x) are the basis polynomials of degree k

in x and bk(t) are the unknown expansion coefficients, which will be determined. The
spectral collocation penalty method leads to the requirement that

Ut+f(U)x=τQ+
m(x)

(
f (U(−1,t))−f

(
h+(t)

))
,

at each of the collocation points x=xj . The penalty parameter τ can depend on x and t.
Q+

m(x) is a polynomial of degree m which vanishes at all the collocation points xj , except
at the boundary point x=−1, so that the penalty term is only applied to the boundary
point.

To formulate the penalty Galerkin spectral method, we assume a solution of the form
U(x,t)=

∑m
k=0bk(t)Pk(x) and find the expansion coefficients by requiring that the projec-

tion of the residual onto the solution subspace vanish. To satisfy the boundary conditions,
we can impose a penalty term on the strong formulation (as in the collocation case), and
then require the projection of the residual of the penalized equation to vanish. Alterna-
tively, we can impose the penalty term after the projection. If we choose Pk(x) to be a
set of orthogonal polynomials, such that

∫
ΩPk(x)Pj(x)dx= γkδjk , the penalty Galerkin

formulation yields the system

γjb
′
j(t)+

∫

Ω
f(U)xPj(x)dx=τ j

(
f(U(−1,t))−f(h+(t))

)∫

Ω
Q+

m(x)Pj(x)dx

for ∀j=0,···,m, where the superscript ′ denotes the derivative with respect to time and
γj are the normalization factors.

We have flexibility in the choice of the penalty parameter τ j and Q+
m, provided only

that the polynomial Q+
m(−1) = 1. One way to accomplish this is to set Q+

m(x) to be
polynomials of degree 0, that is, Q+

m(x)=1=P0(x). In this case, the penalty terms appear
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only in the equation for b′0(t), that is,

γ0b
′
0(t) = −

∫

Ω
f(U)xdx+2τ0

(
f(U(−1,t))−f(h+(t))

)

= f(U(−1,t))−f(U(1,t))+2τ0
(
f(U(−1,t))−f(h+(t))

)
,

γjb
′
j(t) = −

∫

Ω

f(U)xPj(x)dx, j=1,···,m.

We refer to this formulation as the strong formulation. However, this choice of Q+
m(x)=1

does not lead to good stability properties for a linear hyperbolic wave equation, as we will
discuss below. A different choice of Q+

m(x) may resolve this problem. For example, if we
let

Q+
m =

m∑

k=0

1
γk
Pk(x),

then the integral in the penalty term can be evaluated exactly
∫ 1

−1
Q+

m(x)Pj(x)dx=
∫ 1

−1

m∑

k=0

1
γl
Pk(x)Pj(x)dx=Pj(−1).

For the orthogonal polynomials such as Chebyshev or Legendre polynomials, Pj(−1) =
(−1)j . In this case the formulation becomes similar to the collocation case above:

γjb
′
j(t)=−

∫

Ω
f(U)xPj(x)dx+τ

(
f(U(−1,t))−f(h+(t))

)
(−1)j ,

for ∀j = 0,···,m. We refer to this formulation as the weak formulation. For the linear
hyperbolic wave equation this penalty term yields a better stability profile.

To see the difference between these two formulations, consider the simple advection
equation ut+ux =0 with both the strong and weak penalty formulations. Figure 1 shows
that the strong formulation (represented by × ) has positive real eigenvalues which will
lead to instability, while the eigenvalues for the weak formulation (represented by ◦) are all
in the left half plane. This is a clear indication that the choice of the penalty polynomial,
Q+

m(x) is critical for stability. From now on, we will consider only the weak formulation
polynomial.

The penalty parameter τ also plays an important role in the stability of the method.
Figure 2 shows the eigenvalues with the dGM and the penalty sGM for two different values
of τ . The top figures show the eigenvalues in the complex plane for τ=−1(left) and τ=−2
(right) for polynomial order m= 8. In each figure, the symbols ◦ and × represent the
eigenvalues with the dGM and the sGM respectively. From the left top figure it is clear
that the dGM and sGM are identical for τ=−1, but when τ is increased, as in the top right
figure, the real part of one eigenvalue increases. This one eigenvalue alone is responsible
for the growth in the spectral radius ρ. This eigenvalue will later be implicated in penalty
sGM’s increased sensitivity to roundoff errors for large τ .
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Figure 1: Eigenvalues in complex plane with the strong penalty formulation with m = 8(left) and m = 20
(right) for τ =−1. The symbols ◦ and × represent the eigenvalues with the weak and strong penalty methods
respectively.

The left bottom figure in Figure 2 shows the spectral radius ρ increasing as a function
of the polynomial order m for τ=−1. The right bottom figure shows the spectral radius ρ
as a function of the penalty parameter τ , for various polynomial orders, on a logarithmic
scale. The figure shows that ρ increases fast around τ=−1.

The figures show that the stability of the formulation depends on the penalty parame-
ters τj , as well as Q+

m(x). Later we will see that the choice of penalty parameter will affect
the accuracy as well as stability of the method.

2.1 Multidomain spectral penalty Galerkin methods

To increase the order of accuracy in the penalty sGMs, we can allow the polynomial order
to rise or we can divide the domain into many smaller subdomains, and apply the sGM
in each domain. To formulate the multi-domain method, we divide the domain Ω=[−1,1]
into N subdomains, or elements, Il, l=1,...,N . For simplicity, we assume here that each
element has the same polynomial order, m, but this is not necessary, or in fact advisable,
in general. The solution in each domain is given by

U l(x,t)=
m∑

k=0

blk(t)Pk(ξ(x)), x∈Il =
[
xl−1/2,xl+1/2

]
,

where Il is the lth element with the domain interval ∆xl and xl−1/2 =xl−∆xl
2 , xl+1/2 =

xl+ ∆xl
2 where xl the cell center. Finally, ξ(x) is the linear map ξ :x 7−→ [−1,1]. For each

element, we have for each j=0,···,N

m∑

k=0

dblk(t)
dt

∫

Il

Pj(ξ(x))Pk(ξ(x))dx+
∫

Il

Pj(ξ(x))f(U l)xdx=Pj
Il
, (2.2)
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Figure 2: Top: Eigenvalues in complex plane with τ =−1(left) and τ =−2(right) for m=8. The symbols ◦ and
× represent the eigenvalues with the dGM and the sGM respectively. Bottom: The spectral radius ρ versus τ
with the dGM(left) and the sGM(right) in logarithmic scale.

where Pj
Il

is the penalty term for the jth coefficient. Assuming, as above, that f ′(U)≥0,
the penalty term can take the form

Pj
I0

= τ j
(
f(U0(−1,t))−f(h+(t))

)
Pj(−1)

Pj
Il

= τ j
(
f(U l(xl− 1

2
,t))−f(U l−1(xl− 1

2
,t))

)
Pj(−1) l=1,...,N

where the τ js may be different in each subdomain.
This formulation easily generalizes to the case where f ′(U) is allowed to be negative.

In that case, we split the flux f=f++f− into its positive (df+

dU ≥0 ) and negative (df−

dU ≤0)
parts. For scalar hyperbolic equations, f =f+ when ∂f

∂U >0 and f =f− when ∂f
∂U <0. For

the system of Eq. (2.1), f± are defined as

f±=
∫
A±dU,

where A is the Jacobian matrix, i.e., A= ∂f
∂U . The Jacobian A is then given by

A± =TΛ±T−1,
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where T is the similarity transformation of A and Λ+ and Λ− are the matrices composed
of the positive and negative eigenvalues respectively with Λ=Λ++Λ− so that f=f++f−.

In this case we can extend the penalty terms to include terms not seen in a characteristic
decomposition, so that the multidomain spectral Galerkin penalty method becomes for
each interior domain,

Pj
Il

= τ
j
1

(
f+(U l(xl−1/2)),t))−f+(U l−1(xl−1/2)),t))

)∆xk

2

∫

Ω
Q+

m(ξ)Pj(ξ)dξ+

τ j
2

(
f−(U l(xl−1/2)),t))−f−(U l−1(xl−1/2)),t))

)∆xk

2

∫

Ω
Q+

m(ξ)Pj(ξ)dξ+

τ j
3

(
f+(U l(xl+1/2)),t))−f+(U l+1(xl+1/2)),t))

)∆xk

2

∫

Ω
Q−

m(ξ)Pj(ξ)dξ+

τ j
4

(
f−(U l(xl+1/2)),t))−f−(U l+1(xl+1/2)),t))

)∆xk

2

∫

Ω
Q−

m(ξ)Pj(ξ)dξ, (2.3)

where τ j are the penalty parameters, and the polynomials Q can be chosen as before. If
τ j
2 =0= τ j

3 , the above penalty formulation is basically the characteristic decomposition.
The case where τ j

1 =τ j
2 =τ j

3 =τ j
4 is equivalent to no flux-splitting. Adjusting the coefficients

allows for flexibility in applying this method. The major advantage of the flexibility of
this formulation is in the case of the non-homogeneous grid, as we see in the following
example.
Example 2.1: Consider the following equation

qt+fx =0, (2.4)

where q=(u,v)T , and f=(v,u). The initial conditions are u(x,0)=sin(ωπx) and v(x,0)=
0 with ω = 5. With these initial conditions, the exact solutions are given by u(x,t) =
1
2(−sin(ωπ(x−t))−sin(ωπ(x+t))) and v(x,t)= 1

2(−sin(ωπ(x−t))+sin(ωπ(x+t))). This
equation was previously investigated by Hu and Atkins for the dGM in [11]. The positive
and negative fluxes are given by f+ =(u+v,u+v)T and f−=(u−v,u−v)T .

We can easily show that the sGM is equivalent to the dGM with the characteristic
decomposition if the following penalty parameters are taken, that is, for q1 =u,

τ1 =−1
2

=τ4, and τ2 =0=τ3,

and for q2 =v,

τ1=−1
2

=−τ4, and τ2=0=τ3.

On the other hand, the case τ1=τ2=−1
2 and τ3=τ4=−1

2 are taken for q1=u and τ1=τ2=−1
2

and τ3 =τ4 = 1
2 for q2 =v, there is no flux-splitting.

In our numerical example, we consider the sGM approximation with a non-homogeneous
grid. A total of 50 elements are used. In the interval x=[−1,0], there are 47 elements
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Figure 3: Solution u(x,t) to Eq. (2.4) at t=0.15 with m=5 with totally 50 elements. Left: Inhomogeneous
grid with no splitting penalty method. Right: Inhomogeneous grid with no splitting penalty method except 3
interface elements near x=0. The interface of two inhomogeneous media is at x=0.

each of size ∆xi = 1
47 ,∀i=1,···,47. In the interval x=[0,1], there are 3 elements with of

size ∆xi = 1
3 ,∀i=48,49,50. In each element, polynomial order m=5 is used.

In each interval x=[−1,0] and x=[0,1], the solutions are smooth and there is no need
to use flux splitting at all. In that case, we use the penalty method such that there is
no flux-splitting, i.e. τ1 = τ2 = τ3 = τ4 =−1

2 for u and τ1 = τ2 =−1
2 =−τ3 =−τ4 for v. If

there is no flux splitting, the method is easily implemented without computing the local
flux conditions for the characteristic decomposition. However, the inhomogeneity of the
grid raises the issue of possible non-physical reflection waves at the grid discontinuity at
x=0. The penalty method can be easily implemented to reduce the artificial reflections
at the grid discontinuity x=0. By adopting the characteristic flux splitting only for the
domains near the grid discontinuity, one can reduce the magnitude of the non-physical
reflections significantly. Furthermore, one can take an advantage of the no flux splitting
method inside each homogeneous domain.

The left figure of Figure 3 shows the non-splitting penalty method at t= 0.15. As
expected, there are small fluctuations in the solution in the region x≤0. These fluctuations
are the non-physical reflecting solutions reflected at x=0 and propagating to the left. The
right figure shows the result with the penalty method where only three elements near x=0
and two boundary elements, use the characteristic penalty method while the other elements
use the non-splitting method. For the numerical experiment, for example, I46,I47 and I48

are implemented based on the characteristic penalty method. Here note that the grid
discontinuity x=0 exists between I47 and I47. We also note that we use the characteristic
penalty method for I1 and I50 to minimize the boundary effects. As shown in the figures,
the penalty method is efficiently flexible to adopt the grid inhomogeneity and obtains an
accurate result without any considerable non-physical reflecting modes.

In [3] the same issue, but in the collocation method, was also briefly discussed.
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2.2 The dGM as a special case of the the multi-domain penalty sGM

In this section, we will present the dGM and then show that it can be seen as an example
of the multi-domain penalty sGM with a particular penalty term τ =−1. To formulate
the dGM we begin with the Galerkin form for every element Il,

m∑

k=0

dblk(t)
dt

∫

Il

Pj(ξ(x))Pk(ξ(x))dx+
∫

Il

Pj(ξ(x))f(U l)xdx=0, j=0,···,m.

and integrate by parts to obtain,

m∑

k=0

dblk(t)
dt

∫

Il

Pj(ξ(x))Pk(ξ(x))dx−
∫

Il

dPj(ξ(x))
dx

f(U l)dx=−Pj(ξ(x))f(U l) |
x

l+1
2

x
l−1

2

. (2.5)

for ∀j=0,···,m.
As usual, we assume that f ′(U)≥0 without loss of generality. Under this assumption,

the boundary term in the above equation can be evaluated by replacing the left flux with
the incoming flux based on the characteristic direction for l>0,

Bj
Il

:= −Pj(ξ(x))f(U l(x,t)) |∂Il
=Pj(−1)f(U l−1(xl− 1

2
,t))−Pj(1)f(U l(xl+ 1

2
,t)).

In the case l=0 where the left-most interval in considered, we replace the incoming value
by the given boundary condition,

Bj
I0

= Pj(−1)f(h+(t))−Pj(1)f(U l(xl+ 1
2
,t)). (2.6)

To see the relationship between the dGM and sGM, we define the auxiliary integrals
F and G

F=
∫

Il

dPj(ξ(x)))
dx

f(U l)dx G=
∫

Il

Pj(ξ(x))f(U l)xdx,

and we note that

F+G=
∫

Il

d

dx

(
Pj(ξ(x))f(U l(x,t))

)
dx=Pj(1)f(U l(xl+ 1

2
,t))−Pj(−1)f(U l(xl− 1

2
,t)). (2.7)

With these two integrals and the penalty and boundary terms, the dGM and sGM can be
rewritten, for each domain l:

(dG) M·b′−F=BIl
, (sG) M·b′+G=PIl

, (2.8)

where the mass matrix M and the coefficient vector b are defined by

Mjk =
∫

Il

Pj(ξ(x))Pk(ξ(x))dx, b=
(
bl0(t),···,blN(t)

)T
.
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Figure 4: Example 2.2: On the horizonal axis is the value of −τ while on the vertical axis the L2 error of the
numerical solution at time t=0.1, with N =10. Left: The errors as a function of −τ for m=3. Right: The
errors as a function of −τ for m=6.

To show that the dGM and sGM formulations are equivalent, we can rearrange the dG
formulation Eq. (2.8) for l>0

M·b′=F+BIl
=Pj(1)f(U l

N(xl+ 1
2
,t))−Pj(−1)f(U l

N(xl− 1
2
,t))−G+BIl

,

M·b′+G = Pj(1)f(U l(xl+ 1
2
,t))−Pj(−1)f(U l(xl− 1

2
,t))+BIl

= Pj(1)f(U l(xl+ 1
2
,t))−Pj(−1)f(U l(xl− 1

2
,t))

+Pj(−1)f(U l−1(xl− 1
2
,t))−Pj(1)f(U l(xl+ 1

2
,t))

= Pj(−1)
(
f(U l−1(xl− 1

2
,t))−f(U l(xl− 1

2
,t))

)

which is equal to the penalty term PIl
with τ=−1. For the case l=0, the left boundary term

U l−1(xl− 1
2
,t) is replaced by the boundary condition h+(t). Thus, the dGM formulation

is just a special case of the penalty multidomain sGM. We saw in Figures 1 and 2 that
different values of the penalty parameter yield different stability properties. Additionally,
changing the value of τ will also change the size of the errors. To see this, consider the
following example.
Example 2.2: Consider the sGM for ut+ux=0 with the initial condition u(x,0)=−sin(πx)
and periodic boundary conditions. Using the multidomain sGM with N=10 and the weak
penalty formulation, we examine the the effect of the penalty parameter τ on the errors.
Figure 4 shows the L2 errors for different τ and m=3(left) and m=6(right) at t=0.1. The
figures show that the optimal value of τ is not τ =−1, i.e. the dGM is not the optimal
method within the class of sGMs. Furthermore, we observe that the optimal value of τ
also depends on the polynomial order. Note that L2 errors are ∼10−4 and ∼10−9 form=3
and m=6, respectively.
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2.3 The flexibility of the penalty parameter

One of the main advantages of the penalty sGM is that the penalty parameters can vary
depending on the problem. To see how the penalty parameter affects the peformance of
the evaluation of hyperbolic conservation laws, consider the following numerical example.

Example 2.3: Consider Burgers’ equation

ut+(u2/2)x =0, x∈ [−1,1], t>0, (2.9)

with the initial condition u(x,0)=x. Then the exact solution ue(x,t) is given by ue(x,t)=
x

1+t . With the given initial condition, there is no incoming boundary condition for the
boundaries both at x=−1 and x=1. Also, if x>0, the characteristic incoming boundary
conditions are applied at the left boundary of each element, ∂I−l . If x<0, the characteristic
incoming boundary conditions are applied at the right boundary of each element, ∂I+

l .
Since the solution is a polynomial of degree only 1, the approximation in each element
can be sufficiently resolved with m=1, i.e. U=

∑1
k=0bk(t)Pk(x). However, the expansion

coefficients bk, for ∀k>1 are not necessarily zero in the Galerkin approximation. The weak
sGM imposes the interface conditions for every mode for which the overall approximation
is affected by round-off errors when the high order approximation is sought. The penalty
sG formulation has more flexibility than the dG formulation to deal with such issue by
exploiting the penalty parameters. Since the solution is only a polynomial of degree 1, we
employ the following penalty parameters

τ j =
{
τ if j=0,1
0 otherwise

. (2.10)

This procedure can be automated by examining the regularity of the coefficients, and
then designing penalty parameters that take this into account. Figure 5 shows the sG
formulation with τ j =−1,∀j=0,···,m which is equivalent to the dGM and the modified
penalty formulation with the condition of Eq. (2.10). The figures show the L2 and L∞
errors at t=0.15. We use the Legendre polynomials with the total number of elements
being 3, with m= 20, τ =−5 and CFL= 0.0001. As shown in the figure, the modified
penalty method represented by ◦ yields the best results. We also compute the errors
between the exact expansion coefficients and the approximated coefficients. The exact
expansion coefficients for each domain are given in Table 1 at any time t.

Figure 6 shows the errors in the expansion coefficients for both the dGM approxima-
tions and the modified penalty approximations at t= tf =0.15. The figures show that the
errors of each expansion coefficient are larger than 10−14 for the dGM approximation for
bk,k>1 while they are close or below 10−14 for the modified penalty sGM.
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,1].

Table 1: The exact expansion coefficients for Example 2.3, for each of three domains at time t.

x∈ [−1,−1
3 ] x∈ [−1

3 , 1
3 ] x∈ [13 ,1]

b0(t) −2
3

1
1+t

0 2
3

1
1+t

b1(t) 1
3

1
1+t

1
3

1
1+t

1
3

1
1+t

bi(t),i>1 0 0 0

3 Roundoff errors of high order sGM

3.1 The coefficient truncation method

Although a larger polynomial order should produce a more accurate solution, in practice
we see that Galerkin approximations with higher order polynomials are more sensitive to
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roundoff errors. This sensitivity to roundoff errors can destroy the accuracy of a solution
for large polynomial values. In this section, we present numerical examples of this problem,
and suggest the coefficient truncation method to resolve it.
Example 3.1: Consider, once again, the linear advection equation Ut+Ux = 0, x ∈
[−1,1], t>0. The solution of this equation is approximated using a dG formulation with
the monomial basis function ψi(x) = xi. Figure 7 shows the decays of the transformed
vector b (left) and the obtained expansion coefficient vector x (right) for the last element
which contains the the right boundary x= 1. The parameters used for the numerical
approximation are total number of domain = 5, m=37, tf =0.11, and CFL=0.005.

The left figure in Figure 7 shows that the element of b decays with m until around
m∼33 with the magnitude ∼10−6. Beyond m>33 it is observed not to decrease. This is
due to the large condition number, κ, of the stiffness matrix M, i.e. κ∼5.1445×1017. The
right figure in Figure 7 shows the decay or growth of the evaluated expansion coefficient
vector x. The figure clearly shows that the expansion coefficients grow rapidly with m.
Figure 8 demonstrates that this results in large errors. This simple example shows that
for high order polynomials, the calculation of the coefficients is very sensitive to round-off
error, and this affects the accuracy of the solution.

To resolve this problem, we modify the penalty method with the truncation method
introduced in [13] for use in the inverse polynomial reconstruction method (IPRM) [12,14]
to reduce deterioration of the error when the polynomial error was large.

To apply the coefficient truncation method, we look at the coefficients resulting from
the intermediate step in the Gaussian elimination. Suppose that the set of expansion
coefficients is to be found from the linear equation Mb′=h, then the system is solved by
Gaussian elimination to yield an upper triangular matrix system U·b′=c. The coefficients
of this system should be rapidly decaying, so to reduce the problem of round-off errors we
impose this requirement by setting

ci =
{
ci if ci>εt
0 otherwise

. (3.1)

Here εt is the tolerance level which is to be determined depending on the decay rate of c.
The motivation behind this method is that, as shown in Figure 1, the spectral radius ρ
increases with m for the Galerkin method and this makes the method sensitive to round-
off errors. The truncation method tries to reduce the magnitude of ρ by truncating the
RHS of the linear system of the Galerkin method by reducing the rank of the matrix.
For example, if the truncation order is n, then the rank of the truncated matrix becomes
m+1−n. With the rank reduced, ρ is also reduced.
Example 3.2: To demonstrate the success of the truncation method in reducing the
effects of round-off errors, we return to Example 3.1 above. We apply the truncation
method with various tolerence levels, i.e. εt =10−14(+), ε=10−12(◦), ε=10−10(�), and
ε=10−6(∇). The left figure in Figure 7 shows that the the elements of b decay faster when
the truncation error is applied for different values of ε. The right figure in Figure 7 shows
the evaluated expansion coefficient vector x. The figure clearly shows that the expansion
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Figure 7: Examples 3.1 and 3.2: Left: The decay of the elements of the load vector c with and without
the truncation method. Right: The decay of the obtained expansion coefficient vector x with and without
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basis functions. Total number of domain is 5, tf =0.11, and CFL=0.005. Various tolerance levels εt are used,
i.e. εt =10−14,10−12,10−10,10−6.

coefficients grow with m exponentially without the truncation method while they decay if
the truncation method is applied. The figures also shows that the expansion coefficients
become truncated to almost machine zeros or very close to zeros if the truncation method
is applied. In the figure, these truncated values are not displayed as the plot uses the
logarithmic scale. The larger εt is used, the faster the truncation of x occurs.

The L∞ errors with m (left) and the pointwise errors with m=37 (right) are given in
Figure 8 with the same symbols as in Figure 7. The left figure in Figure 8 shows the L∞
decay or growth with m with and without the truncation method. The figure shows that
the L∞ errors decay up to m∼7 and they start to grow beyond m∼20 if the truncation
method is not applied or the truncation method is applied with εt=10−14. The truncation
method with ε=10−10 or 10−12 yields the best results up to m∼40. If εt =10−6 is used,
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the L∞ remains around 10−6 for large m. It is observed that for m>40, the L∞ errors
remains around 10−6 when εt = 10−6 while the other cases result in the growth of L∞
errors. The right figure in Figure 8 shows the pointwise errors with m=37. The figure
shows that the best result is obtained when εt =10−12 is used.

Figure 8 suggests that the tolerance level used with the truncation method can be
chosen by observing the decay rate of c for a given m. Also, one can use the different
tolerance level εt for different element since each element has different decay rate of c.

3.2 Numerical consistency

Another factor which increases the sensitivity to round-off errors is the inconsistent eval-
uation of the integrals in the formulation of the system of ODEs for the approxima-
tion coefficients. On the Galerkin formulationwe need to compute two sets of integrals,
I1 =

∫
ΩPk(x)Pj(x)dx and I2=

∫
Ω−f(U)xPj(x)dx. While I1 can be evaluated exactly, be-

cause the form of the polynomials is known explicitly in general, I2 can not generally be
evaluated, and so quadrature must be used. We define the integral operators E and Q,
where E is the exact integration operator E(g)=

∫
Ωg(x), and Q some quadrature rule such

as Gauss quadrature rule used to evaluate the given integral Q(g)=
∑M

i=0giωi∼
∫
Ωg, where

ωi are the weights. The Galerkin formulation can now be performed in one of four ways:

E(PlPj)=E(f(U)xPj)+Pl, E(PlPj)=Q(f(U)xPj)+Pl, (3.2)
Q(PlPj)=E(f(U)xPj)+Pl, Q(PlPj)=Q(f(U)xPj)+Pl.

We say that the Galerkin formulation is numerically consistent if the integrals are evaluated
in the same way on both sides of the equations (both by E or both by Q), and it is
numerically inconsistent if the two integrals are evaluated differently on the two sides of
the equation.

The phenomenon we are considering is essentially a numerical one. For high polyno-
mial order, the numerically consistent formulation yields more accurate results, and lower
sensitivity to roundoff errors, than the inconsistent formulation. Consequently the above
4 different formulations, Eq. (3.2), show different errors.
Example 3.3: We first consider the following steady-state problem

ut+ux =sin(πx), x∈ [−1,1],t>0,

with initial condition u(x,0)=us(x)+εMδ(x), where εM is machine accuracy, εM =10−16

and δ(x) is the random function, 0≤δ(x)≤1 with the normal distribution. The boundary
condition is u(−1,t)=− 1

π cos(−π), ∀t>0. The steady-state solution, us=limt→∞u(x,t)=
us(x) for t→∞ is then given by us(x,t)=− 1

π cos(π(x−t)). For the numerical experiment,
the final time is tf =1, the total number of domain N=30, the penalty parameter τ=−5,
and the CFL number CFL=0.001 for dt=CFL×dx=6.6667×10−5 are used where each
element has the same element size and polynomial order.
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Figure 9: Left: L∞ errors vs m for the steady-state problem ut+ux =sin(πx). The symbols ◦ and × denote
the quadrature-quadrature (QQ) and exact-quadrature (EQ) formulations for the penalty sGM and � and ∇
the QQ and EQ formulations for the dGM. The final time tf =1 and the total number of domain is 30. The
penalty paramter is τ =−5 and the CFL number is CFL=0.001, i.e. dt=6.6667×10−5 .

Figure 9 shows the convergence of L2 and L∞ errors with m for the the weak penalty
formulation and the dG formulation. The LHS or RHS are evaluated either using the
quadrature rules labeled by Q or the exact formula denotedlabeled by E for the penalty
formulation with τ=−5. As the figures show, both the L∞ and L2 errors decay exponen-
tially until around m∼ 7. For m> 7, these errors grow slightly due to round-off errors.
The figures show that the results with the consistent evaluation of the stiffness matrix of
the sGM (QQ) show better performance for the weak penalty sGM when round-off error
become dominant. We note that although the dGM does not suffer from an inconsistent
formulation, the consistent formulation for the penalty sGM yields the best results when
m is large.

4 Summary and conclusion

We describe the formulation of the multi-domain penalty sGM and demonstrated that
the flexibility of the penalty formulation can be advantageous, because it allows us to
tailor the penalty parameter to match the problem. This is especially relevant in the
case where the sub-domains have different mesh size or polynomial order, as the flexibility
in the penalty parameters can allow us to avoid costly flux splitting except near the
grid discontinuity. However, different values of the penalty parameter effect the stability,
accuracy, and sensitivity to round-off errors. For example, the dGM is simply a sGM
with a particular choice of penalty parameter, which for a linear wave equation has nice
stability properties, though it is not optimal in terms of accuracy.

We presented two numerical issues which arise in the solution of hyperbolic conserva-
tion laws using the multi-domain penalty sGM with high order polynomials. The first is
the sensitivity of high order sGMs to roundoff errors, which can potentially ruin the accu-
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racy of the solution. To resolve this issue we introduce the coefficient truncation method
which prevents the rapid growth of the errors with m, and has a stabilizing effect on the
method. The second numerical issue is that consistent evaluation of the stiffness matrix
and the load vector yields a better result when the high order polynomials are used with
the penalty formulation. This sensitivity, too, depends on the penalty parameter, and we
note that the case of τ =−1, (the dGM case) does not seem affected by this numerical
consistency issue.

Future studies will center around methods for choosing the penalty parameter to opti-
mize for accuracy and stability, as well as further development of the coefficient truncation
method for multi-dimensional problems.
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