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Abstract

Diagonally split Runge–Kutta (DSRK) time discretization meth-
ods [1] are a class of implicit time-stepping schemes which offer both
high-order convergence and a form of strong stability known as un-
conditional contractivity. This combination is not possible within
the classes of Runge–Kutta or linear multistep methods and there-
fore appears promising for the strong stability preserving (SSP) time-
stepping community [10] which is generally concerned with computing
oscillation-free numerical solutions of PDEs. Using a variety of nu-
merical test problems, we show that although second- and third-order
DSRK methods do preserve the strong stability property for all time
step-sizes, they suffer from order reduction at large step-sizes. Indeed,
for time-steps larger than those typically chosen for explicit methods,
DSRK methods behave like first-order implicit methods. This is un-
fortunate, since it is precisely to allow a large ∆t that we choose to
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use implicit methods. These results suggest that unconditionally con-
tractive DSRK methods are limited in usefulness as they are unable to
compete with either the first-order backward Euler method for large
step-sizes or with Crank-Nicolson or high-order explicit SSP Runge–
Kutta methods for smaller step-sizes.

1 Introduction

Strong stability preserving (SSP) high-order time discretizations [36, 38, 14]
were developed for the solution of semi-discrete method-of-lines approxima-
tions of hyperbolic partial differential equations (PDEs) with discontinuous
solutions. In such cases, carefully constructed spatial discretization meth-
ods guarantee a desired strong stability property (for example, that the so-
lution be free of oscillations) when coupled with first-order forward Euler
(FE) time-stepping. However, for practical computation, higher-order time
discretizations are usually needed, and there is no guarantee that the non-
linearly stable spatial discretization will produce stable results when coupled
with a linearly stable higher-order time discretization. In fact, numerical evi-
dence [13, 14] shows that oscillations may occur when using a linearly stable,
high-order time discretization which does not preserve the stability proper-
ties of forward Euler, even if the same spatial discretization is total variation
diminishing (TVD) when combined with the first-order forward Euler time-
discretization. SSP methods are high-order time discretization methods that
preserve the strong stability properties—in any norm or semi-norm—of the
spatial discretization coupled with forward Euler time-stepping.

The idea behind SSP methods is to assume that the spatial discretization
is strongly stable under a certain semi-norm when coupled with the forward
Euler time discretization, for a suitably restricted time-step, and then try to
find a higher-order time discretization that maintains strong stability for the
same semi-norm, perhaps under a different time-step restriction. The class
of high-order SSP time discretization methods for the semi-discrete method-
of-lines approximations of PDEs was developed in [38, 36] and was at that
time known as TVD time discretizations. This class of methods was further
studied in [13, 11, 33, 20, 40, 41, 34, 32, 37, 10]. These methods preserve
the stability properties of forward Euler in any norm or semi-norm. In fact,
since the stability arguments are based on convex decompositions of high-
order methods in terms of the forward Euler method, any convex function
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(such as the cell entropy stability property of high-order schemes studied in
[31, 29]) will be preserved by SSP high-order time discretizations. These SSP
time discretizations can then be safely used with any spatial discretization
which has the required stability properties when coupled with forward Euler.

The drawback of explicit SSP methods is that they suffer from restric-
tive time-step conditions. To obviate these difficulties we turn to implicit
time-stepping methods with SSP properties. It was shown in [20] and [16],
that any spatial discretization which is strongly stable in some semi-norm
for the explicit forward Euler method under a certain time restriction will
also be strongly stable, in the same semi-norm, with the implicit backward
Euler (BE) method, without a time-step restriction. In previous work [14],
efforts have been made to design higher-order implicit methods which share
the strong stability properties of backward Euler, without any restriction
on the time-step. Unfortunately, this goal cannot be realized for methods
within the class of Runge–Kutta (RK) or linear multistep methods. For
both implicit Runge–Kutta and multistep methods it has been proved that
any higher-order SSP method, even for linear constant coefficient problems,
will have some time-step restriction [14, 39]. This step-size restriction be-
comes apparent even in the simplest computations. An example of this is
seen in Section 2, Figure 1 and Section 4, Table 3 where the solution to a
linear advection equation is discretized using a TVD forward difference spa-
tial discretization and the implicit Crank–Nicolson (CN) time discretization.
The numerical solution develops oscillations when the time-step restriction
is exceeded. However, when the first-order, unconditionally SSP backward
Euler method is used with this spatial discretization, the numerical solution
remains TVD even for large step sizes.

To identify methods with no step-size restriction, we must extend our
search beyond the standard Runge–Kutta and linear multistep methods. One
such class, in particular, is the family of diagonally split Runge–Kutta meth-
ods (DSRK) [1, 2, 18, 21], which have been shown to allow for unconditional
contractivity. In this paper, we study these DSRK methods—which may
satisfy the SSP property with no step-size restriction for certain classes of
problems—and compare their performance to standard implicit and explicit
time-stepping methods. The paper is structured as follows: in Section 2,
we describe the construction of SSP RK methods and review the results for
explicit and implicit SSP RK methods. In Section 3 we introduce the DSRK
methods and study their properties. In Section 4 we present numerical stud-
ies comparing DSRK with implicit and explicit RK methods, in terms of
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both accuracy and efficiency. In Section 5, we draw conclusions about the
use of DSRK methods and future research directions.

2 Implicit and Explicit SSP Runge–Kutta

Methods

We wish to approximate the solution of the ODE system

ut = L(u), (1)

with initial conditions u(t0) = u0, typically arising from the spatial dis-
cretization of the PDE

ut + f(u)x = 0,

in which case u = (uj) is a vector which gives the numerical solution of the
PDE at spatial points xj , j = 1, . . . , m. The spatial discretization L(u) is
often chosen so that forward Euler

u
n+1 = u

n + ∆tL(un),

satisfies the strong stability requirement ||un+1|| ≤ ||un|| in some norm or
semi-norm || · ||, under the CFL condition

∆t ≤ ∆tFE.

As in [38, 6], a general m-stage Runge–Kutta (RK) method for (1) is
written in Shu–Osher form

u
(0) = u

n,

u
(i) =

m
∑

k=0

(

αiku
(k) + ∆tβikL(u(k))

)

, αik ≥ 0, i = 1, . . . , m, (2)

u
n+1 = u

(m).

Consistency requires that
∑m

k=0 αik = 1. Thus, if αik ≥ 0 and βik ≥ 0,
all the intermediate stages in (2), u

(i), are simply convex combinations of
backward Euler and forward Euler operators, with ∆t replaced by βik

αik

∆t.
Therefore, any norm, semi-norm or convex function property satisfied by
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both the backward Euler and forward Euler methods will be preserved by
the RK method, under the time-step restriction

∆t ≤ min
i6=k

αik

βik

∆tFE, (3)

where αik

βik

= ∞ if βik = 0. If the method consists of only forward Euler
steps, we call it an explicit Runge–Kutta method, otherwise it is known as
an implicit Runge–Kutta method. In the case where any of the βik < 0,
some modification is necessary [36]; for further details on the development of
schemes under this relaxed condition see [12, 34, 14].

Much of the research in the field of SSP methods centers around the
search for high-order SSP methods where the allowable time-step is as large
as possible. If a method has a SSP time-step restriction ∆t ≤ C∆tFE, then
we will often use C, the SSP coefficient or CFL coefficient, to measure the
allowable time-step of a method relative to that of forward Euler.

2.1 Explicit SSP Runge–Kutta methods

Many optimal methods have been found in [38, 13, 14, 11, 33, 41]. These
methods include the case where there are more stages than the minimum
required for the desired order, so as to maximize the allowable time-step.
Although the additional stages increase the computational cost, this is often
offset by the larger step-size that may be taken. The most popular explicit
SSP RK methods are given below.

Two-stage, second-order SSPRK (SSPRK(2,2)) An optimal second-
order SSP Runge–Kutta method is given by

u
(1) = u

n + ∆tL(un),

u
n+1 =

1

2
u

n +
1

2
u

(1) +
1

2
∆tL(u(1)).

The step-size restriction for this method is ∆t ≤ ∆tFE, which means that it
has a SSP coefficient of C = 1. However, note that the computational work
required is doubled compared to forward Euler.
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Three-stage, third-order SSPRK (SSPRK(3,3)) An optimal third-
order SSP Runge–Kutta method is given by

u
(1) = u

n + ∆tL(un),

u
(2) =

3

4
u

n +
1

4
u

(1) +
1

4
∆tL(u(1)),

u
n+1 =

1

3
u

n +
2

3
u

(2) +
2

3
∆tL(u(2)).

The step-size restriction for this method is ∆t ≤ ∆tFE, so it has a value of
C = 1. However, the computational work in this method is three times that
of forward Euler. This method is very commonly used and is also known as
the third-order TVD Runge-Kutta scheme or the Shu–Osher method.

Five-stage, fourth-order SSPRK (SSPRK(5,4)) An optimal method
developed in [40, 32] with coefficients expressed to 15 digits is

u
(1) = u

n + 0.391752226571890∆tL(un),

u
(2) = 0.444370493651235un + 0.555629506348765u(1)

+ 0.368410593050371∆tL(u(1)),

u
(3) = 0.620101851488403un + 0.379898148511597u(2)

+ 0.251891774271694∆tL(u(2)),

u
(4) = 0.178079954393132un + 0.821920045606868u(3)

+ 0.544974750228521∆tL(u(3)),

u
n+1 = 0.517231671970585u(2)

+ 0.096059710526146u(3) + 0.063692468666290∆tL(u(3))

+ 0.386708617503269u(4) + 0.226007483236906∆tL(u(4)).

The step-size restriction for this method is approximately ∆t ≤ 1.508∆tFE,
which means that it has a value of C ≈ 1.508. The computational work in
this method is five times that of forward Euler, but the allowable time-step
makes this method almost as efficient as the SSPRK(3,3) method, yet higher
order.

In the development of new methods and in the numerical tests below,
these explicit methods will serve as the gold standard, to be compared to
implicit methods in terms of the time-step allowed and the computational
cost required.
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2.2 Implicit SSP methods

Often, total variation diminishing (TVD) spatial discretizations are con-
structed in conjunction with the forward Euler method. The implicit back-
ward Euler method will also preserve this property for all step-sizes, but a
different time-discretization, such as the second-order Crank–Nicolson (CN)
method, may only preserve the TVD property for a limited range of step-
sizes. For example, consider the case of the linear wave equation

ut + aux = 0,

with a = −2π, a step-function initial condition

u(x, 0) =

{

1 if π
2
≤ x ≤ 3π

2
,

0 otherwise,

and periodic boundary conditions on the domain (0, 2π]. The solution is a
step function convected around the domain. For a simple first-order forward-
difference TVD spatial discretization L(u) of −aux, the result will be TVD
for all sizes of ∆t when using the implicit backward Euler method. If we use
the forward Euler time-stepping, the result is TVD for ∆t ≤ ∆tFE = ∆x

|a|
. On

the other hand, consider the Crank–Nicolson method

u
n+1 = u

n +
1

2
∆tL(un) +

1

2
∆tL(un+1). (4)

As (4) is in Shu–Osher form [36], we see from (3) that it is SSP only for values
∆t ≤ 2∆tFE. This restriction is illustrated in Figure 1 where an excessively
large ∆t leads to oscillations and a clear violation of the TVD property.

Crank–Nicolson requires extra computational cost due to the solution
of an implicit system, but with respect to strong stability only allows a
doubling of the step-size compared to forward Euler or the second-order
SSPRK(2,2). This means that, in general, it will not be efficient to use this
method. The major focus of our work is the search for implicit RK methods
which have no time-step restriction. The first-order backward Euler method
is one such method. Unfortunately, there are no Runge–Kutta or linear
multistep methods of order greater than one which will satisfy this property
[39, 19]. However, if we search outside these classes, we can find higher-
order methods which are unconditionally SSP. One such class is the family
of diagonally split Runge–Kutta (DSRK) methods.
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Figure 1: Oscillations from Crank–Nicolson time-stepping in the advection
of a square wave with ∆t = 8∆tFE = 8∆x and ∆x = 2π

512
.

3 Diagonally Split Runge–Kutta Methods

DSRK methods [1, 2, 21, 18] are one-step methods which are based on a
Runge–Kutta formulation, but where the ODE operator L in (1) has different
inputs used for the diagonal and off-diagonal components. We define the
diagonal splitting function of L as

Lj(u, z) = L(z1, z2, . . . , zj−1, uj, zj+1, . . . , zm), j = 1, . . . , m, (5)

that is, the jth component of L(u, z) is computed using the jth component
of u for the jth input of L and components of z for the other inputs of L.

The general DSRK method is

U
i = u

n + ∆t
m
∑

j=1

aijL(U j, Zj), (6a)

Z
i = u

n + ∆t

m
∑

j=1

wijL(U j , Zj), (6b)

u
n+1 = u

n + ∆t
m
∑

j=1

bjL(U j, Zj), (6c)
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order 1 b b
T
e = 1

order 2 b

b

b
TCe = 1

2

order 3 b

b b

b
TC2

e = 1
3

b

b

b

b
TWCe = 1

6 b

bc

b

b
TACe = 1

6

order 4 b

b b b

b
TC3

e = 1
4

b

b b

b

b
TCWCe = 1

8 b

b bc

b

b
TCACe = 1

8

b

b

b b

b
TWC2

e = 1
12 b

bc

b b

b
TAC2

e = 1
12

b

b

b

b

b
TW2Ce = 1

24 b

bc

b

b

b
TAWCe = 1

24

b

b

bc

b

b
TWACe = 1

24 b

bc

bc

b

b
TA2Ce = 1

24

Table 1: The 14 order conditions for fourth-order DSRK schemes written in
matrix form where C = diag(c). See [2] for an explanation of the trees.

where the coefficients (A, bT, c,W) of the method must satisfy the order
conditions in Table 1. We note that these include the order conditions of the
so-called underlying Runge–Kutta method (i.e., conditions only on A = (aij),
b, and c) and are augmented by additional order conditions on the coefficients
W = (wij).

3.1 Dissipative systems and contractivity

Bellen et al. [1] introduced the class of DSRK methods for dissipative systems

ut = L(t, u). In the special case of the maximum norm ‖ · ‖∞, a dissipative
system is characterized (see [2], following Theorem 4.1) by the condition

m
∑

j=1,j 6=i

∣

∣

∣

∣

∂Li(t, u)

∂uj

∣

∣

∣

∣

≤ −
∂Li(t, u)

∂yi

, i = 1, . . . , m,

for all t ≤ t0 and u ∈ R
m. We note in particular that our numerical test

problems in Sections 4.1 and 4.2 satisfy this condition.
If the ODE system is dissipative, then solutions satisfy a contractivity

property [39, 23, 43]. Specifically, if u(t) and v(t) are two solutions corre-
sponding to initial conditions u(t0) and v(t0) then

‖u(t)− v(t)‖ ≤ ‖u(t0)− v(t0)‖,
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in some norm of interest. Naturally, if solutions to the ODE system obey a
contractivity property then it is desirable that a numerical method for solving
the problem be contractive as well, i.e., that given numerical solutions un and
ũn, ||ũn+1−un+1|| ≤ ||ũn−un|| (possibly subject to a time-step restriction).

It was shown in Theorem 3.3 of [2] that a nonconfluent DSRK method for
which (I−AX)−1 exists for any diagonal matrix X = diag(x1, x2, . . . , xs) ≤
0 is unconditionally contractive in the maximum norm for any dissipative
system if and only if:

|1 + b
TX(I−AX)−1

e|+ ‖bTX(I−AX)−1‖1 = 1, (7a)

|1 + WT
j X(I−AX)−1

e|+ ‖WT
j X(I−AX)−1‖1 = 1, for j = 1, . . . , s,

(7b)

for all X = diag(x1, x2, . . . , xs) ≤ 0, where Wj indicates the jth column of
W.

In [21], in ’t Hout showed that if a DSRK method is unconditionally
contractive in the maximum norm, the underlying RK method is of classical
order p ≤ 4, and has stage order p̃ ≤ 1. In [18], Horváth studied the
positivity of RK and DSRK methods, and showed that DSRK schemes can
be unconditionally positive.

The results on DSRK methods in terms of positivity and contractivity
appear promising when searching for implicit SSP schemes, because positiv-
ity, contractivity, and the SSP condition are all very closely related [16, 17, 5,
6, 23]. For example, a loss of positivity implies the loss of the max-norm SSP
property. For Runge–Kutta methods a link has also been established between
time-step restrictions under the SSP condition and contractivity, namely that
the time-step restrictions under either property agree [5], thereby enabling
the possibility of transferring results established for the contractive case to
the SSP case [16], and vice versa. For multistep methods, the time-step re-
strictions coming from either an SSP or contractivity analysis are the same,
as can be seen by examining the proofs appearing in [26, 25, 36]. If we in-
clude the starting procedure into the analysis, or if we consider boundedness
(a related nonlinear stability property) rather than the SSP property, signif-
icantly milder time-step restrictions may arise [20]. However, even with this
less restrictive boundedness property, we find that unconditional nonlinear
stability is impossible for schemes that are more than first order [19]. The
promise of DSRK method is that there exist higher-order implicit uncondi-
tionally contractive methods, and therefore possibly DSRK methods which
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are unconditionally SSP, in this class.

3.2 DSRK schemes

It is illustrative to examine (6) when the ODE operator L is linear. In this
case, with matrix L decomposed into L = LD + LN where LD = diag(L), we
have L(u, z) = LDu + LNz and (6) becomes

U
i = u

n + ∆t
m
∑

j=1

aij

(

LDU
j + LNZ

j
)

, (8a)

Z
i = u

n + ∆t

m
∑

j=1

wij

(

LDU
j + LNZ

j
)

, (8b)

u
n+1 = u

n + ∆t
m
∑

j=1

bj

(

LDU
j + LNZ

j
)

, (8c)

and thus we see that for a linear ODE system), DSRK methods decompose
the system into diagonal and off-diagonal components and treat each differ-
ently.

We now list the DSRK schemes which are used in Section 4 for our nu-
merical tests.

Second-order DSRK (“DSRK2”) This second-order DSRK from [1] is
based on the underlying two-stage, second-order implicit RK method speci-
fied by the Butcher tableau

c A

b
T =

0 1
2
−1

2

1 1
2

1
2

1
2

1
2

, combined with W =

[

0 0
1
2

1
2

]

. (9a)

Thus the DSRK2 scheme is

U
1 = u

n +
1

2
∆tL(un, U 1)−

1

2
∆tL(un+1), (9b)

u
n+1 = u

n +
1

2
∆tL(un, U 1) +

1

2
∆tL(un+1). (9c)
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Note that the u
n+1 terms are not split. For linear problems, (9) becomes

U
1 = u

n +
1

2
∆t
[

LNu
n + LDU

1
]

−
1

2
∆t
[

Lu
n+1
]

, (10a)

u
n+1 = u

n +
1

2
∆t
[

LNu
n + LDU

1
]

+
1

2
∆t
[

Lu
n+1
]

. (10b)

Note also in the special case when LD = 0, (10) decouples and (10b) is
exactly the Crank–Nicolson method.

Third-order DSRK (“DSRK3”) This formally third-order DSRK scheme
[1, 2, 21] is based on the underlying RK method:

c A

b
T =

0 5
2
−2 −1

2
1
2
−1 2 −1

2

1 1
6

2
3

1
6

1
6

2
3

1
6

, combined with W =







0 0 0
7
24

1
6

1
24

1
6

2
3

1
6






.

In our numerical experiments in Section 4.1, we will show that these
DSRK methods behave as expected in terms of contractivity. Unfortunately,
however, these methods suffer from order reduction. This is not completely
unexpected, as [21] showed that the underlying RK methods must have stage
order at most one, and low stage order—at least in RK schemes—is known to
lead to order reduction [15]. We discuss order reduction further in Section 4.5
where, for comparison, we use a DSRK method which is based on the two-
stage, second-order implicit RK method

c A

b
T =

1
2

3
4
−1

4

1 1 0
1 0

, combined with W =

[

1
2

0
1 0

]

. (11)

We call this method DSRK2so2. The underlying RK scheme here has stage
order two. Because the underlying method has stage order larger than one,
the DSRK method based on it cannot be unconditionally contractive [21].
In numerical tests (not included) we observed that indeed, this DSRK2so2
violated the SSP condition for large enough ∆t.
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3.2.1 Higher-order DSRK schemes

Although unconditionally contractive second- and third-order DSRK meth-
ods such as DSRK2 and DSRK3 exist, so far no unconditionally contractive
fourth-order DSRK methods have been found. Theorem 2.4 of [21] presents
necessary conditions for DSRK schemes to be unconditionally contractive in
the maximum norm. Specifically, in the proof, the following two necessary
conditions are given:

all principal minors of A− eb
T are nonnegative, (12a)

for each i ∈ {1, 2, . . . , s}, det[(A←i b
T)(I)] ≥ 0

for every I ⊂ {1, 2, . . . , s} with i ∈ I,
(12b)

where the notation M(I) indicates the principal submatrix formed by se-
lecting from M only those rows and columns indexed by I. These necessary
conditions are simpler than (7) because they involve neither the matrix X
nor any matrix inverses. This latter property ensures the conditions can
be written out as polynomial expressions which is ideal for the optimization
software discussed next.

As a first step towards finding an unconditionally contractive four-stage
fourth-order DSRK (DSRK44), we employ the proprietary Branch and Re-
duce Optimization Navigator (BARON) software [35] to search for DSRK44
satisfying conditions (12).

In [27, 32] BARON was used to find optimal explicit SSPRK schemes
because the branch-and-reduce algorithm used by BARON can guarantee
global optimality under certain factorable and boundedness conditions [42].
In [27, 32], the optimization was done by maximizing the SSP coefficient
while constraining based on the Runge–Kutta order conditions. We begin
by searching for any feasible methods by minimizing the sum of the squares
of the b coefficients (because we anticipate that very large b coefficients
would give poor schemes) while imposing the 14 order conditions in Table 1
and the 48 necessary conditions (12) as constraints. BARON ran for 30
days (on an Athlon MP 2800+ with 1GiB of RAM) and was unable to find
any feasible DSRK44 schemes satisfying even the necessary conditions (12).
Constrained only by the order conditions, BARON was able to quickly find
DSRK44 schemes. Thus while DSRK44 schemes certainly exist, BARON
was unable to find any schemes within this class that satisfy the necessary
conditions (12) for unconditional contractivity. On the other hand, BARON
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was able—during the first few minutes of its preprocessing step—to find
five-stage fourth-order DSRK methods satisfying the necessary conditions
(12). Altogether, this is a strong indication that unconditionally contractive
DSRK44 methods do not exist. However, this does not constitute a proof
because even after 30 days the program had not run to completion. We leave
open the question of the existence of unconditionally contractive five-stage
fourth-order DSRK schemes. However such schemes are still likely to suffer
from the order reduction noted in Section 4.

3.3 Numerical implementation of DSRK

For linear problems, we implement DSRK using (8) by re-arranging all the
unknowns into a larger linear system, in general (2sm)×(2sm) where m is the
size of the linear system (1) and s is the number of stages in the underlying
Runge–Kutta scheme, although particular coefficients may result in a smaller
system. For example, DSRK2 (10) can be written as the 2m× 2m system

[

I− 1
2
∆tLD

1
2
∆tL

−1
2
∆tLD I− 1

2
∆tL

]

(

U
1

u
n+1

)

=

(

u
n + 1

2
∆tLNu

n

u
n + 1

2
∆tLNu

n

)

,

where I represents the m × m identity. We then simply solve this linear
system to advance one time-step. As is usually the case, nonlinear systems are
considerably more difficult. For the non-linear problems, we use a numerical
zero-finding method to solve the nonlinear equations.

All numerical computations are performed with Matlab versions 7.0 and
7.3 using double precision on x86 and x86-64 architectures. Linear systems
were solved using Matlab’s backslash operator, whereas for the nonlinear
problems in Sections 4.4 and 4.5, we implement the diagonal splitting func-
tion (5), and use a black-box equation solver (Matlab’s fsolve) directly
on (6).

4 Numerical Results

We focus our numerical experiments on three types of problems: convection,
diffusion, and convection-diffusion. SSP methods are perhaps most impor-
tant for convection driven problems, such as hyperbolic problems with discon-
tinuous solutions. The methods have also been used to treat problems where

14



the slope or some derivative of the solution is discontinuous and, in particu-
lar, SSP schemes have been used widely to treat Hamilton–Jacobi equations
(see, e.g., [30]). Many other problems of reaction-advection-diffusion type
also can benefit strongly from nonlinearly stable time-stepping. For example
time-stepping a spatially discretized Black–Scholes equation (an equation we
consider in Section 4.3) can lead to spurious oscillations in the solution. These
oscillations are particularly undesirable in option-pricing problems since they
can lead to highly oscillatory results in the derivative based quantities (e.g.,
“the Greeks” γ and δ) that end-users are interested in.

4.1 Convection driven problems

An important prototype problem for SSP methods is the linear wave equa-
tion, or advection equation

ut + aux = 0, 0 ≤ x ≤ 2π (13)

We consider (13) with a = −2π, periodic boundary conditions and various
initial conditions. We use a method-of-lines approach, discretizing the inter-
val (0, 2π] into m points xj = j∆x, j = 1, . . . , m, and then discretizing −aux

with first-order upwind finite differences. We solve the resulting system (1)
using the time-stepping schemes described in Sections 2 and 3.

4.1.1 Smooth initial conditions

Table 2 shows a convergence study for (13) with a fixed ∆x and smooth
initial data

u(0, x) = sin(x).

The implicit time-discretization methods used are backward Euler (BE),
Crank–Nicolson (CN), DSRK2 and DSRK3. We also evolve the system with
several explicit methods: forward Euler (FE), SSPRK(2,2), SSPRK(3,3), and
SSPRK(5,4). To isolate the effect of the time-discretization error, we exclude
the effect of the error associated with the spatial discretization by comparing
the numerical solution to the exact solution of the ODE system (1), rather
than to the exact solution of the underlying PDE. In lieu of the exact so-
lution we use a very accurate numerical solution obtained using Matlab’s
ode45 with minimal tolerances (AbsTol = 1 × 10−14, RelTol = 1 × 10−13).
Table 2 shows that all the methods achieve their design order when ∆t is
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discrete error, l∞-norm
c N BE order CN order DSRK2 order DSRK3 order
4 16 0.518 0.0582 0.408 0.395
2 32 0.336 0.62 0.0147 1.98 0.194 1.08 0.178 1.15
1 64 0.194 0.79 3.70e-3 2.00 0.0714 1.44 0.0590 1.59
1
2

128 0.105 0.89 9.25e-4 2.00 0.0223 1.68 0.0152 1.95

· · · · · · · · · · · · · · ·
1
32

2048 7.04e-3 3.61e-6 1.09e-4 1.21e-5
1
64

4096 3.53e-3 1.00 9.04e-7 2.00 2.74e-5 1.99 1.61e-6 2.91
1

128
8192 1.77e-3 1.00 2.26e-7 2.00 6.87e-6 1.99 2.09e-7 2.95

c N FE order SSP22 order SSP33 order SSP54 order
2 32 unstable unstable unstable 2.66e-5
1 64 0.265 7.43e-3 1.82e-4 1.66e-6 4.00
1
2

128 0.122 1.12 1.85e-3 2.01 2.27e-5 3.00 1.03e-7 4.01

Table 2: Convergence study for the linear advection of a sine wave to tf =
1 using N time-steps, m = 64 points and a first-order upwinding spatial
discretization. Here c measures the size of the step relative to ∆tFE.

sufficiently small. However, the errors from CN are typically smaller than
the errors produced by the other implicit methods. For large ∆t, the second-
and third-order DSRK schemes are far worse than CN. If we broaden our ex-
periments to include explicit schemes, and take time-steps which are within
the stability time-step restriction, we obtain smaller errors still. Given the
relatively inexpensive cost of explicit time-stepping, it would appear that
high-order explicit schemes (e.g., SSPRK(5,4)) are preferred for this smooth
problem, unless, perhaps, very large time-steps are preferred over accuracy
considerations.

4.1.2 Discontinuous initial conditions

We now consider the important case of advection of discontinuous data

u(x, 0) =

{

1 if π
2
≤ x ≤ 3π

2
,

0 otherwise.
(14)

Figure 2 shows typical results. Note that oscillations are observed in the
Crank–Nicolson results, while the DSRK schemes are free of such oscillations.
In fact, Table 3 shows that for any time-step size BE, DSRK2 and DSRK3
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Figure 2: Advection of a square wave after two time-steps, showing oscilla-
tions from Crank–Nicolson and none in the other methods. Here c = 16 and
we take a first-order upwinding spatial discretization with m = 512 points in
space.

preserve the TVD property of the spatial discretization coupled with forward
Euler. In contrast, Crank–Nicolson exhibits oscillations for time-steps larger
than ∆t = 2

|a|
∆x ( i.e., c > 2).

4.1.3 Order reduction and scheme selection

We now delve deeper into the observed convergence rates of our smooth and
nonsmooth problems.

Figures 3 and 4 show that for large time-steps, the DSRK methods exhibit
behavior similar to backward Euler in that they exhibit large errors and as
we decrease size of the time-steps, the error decreases at a rate which appears
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maxt TV (u)
c N exact CN BE DSRK2 DSRK3
32 16 2 8.78 2 2 2
16 32 2 6.64 2 2 2
8 64 2 4.73 2 2 2
4 128 2 3.33 2 2 2
2 256 2 2 2 2 2
1 512 2 2 2 2 2

Table 3: Total variation of the solution for the advection of a square wave
(N time-steps, tf = 1). The spatial discretization uses m = 512 points,
first-order upwinding, and periodic BCs.

only first order. As the time-steps are taken smaller still, the convergence
rate increases to the design order of the DSRK schemes. In contrast, we note
that Crank–Nicolson shows consistent second-order convergence over a wide
range of time-steps.

On the discontinuous problem (Figure 4) we note the DSRK schemes do
not produce significantly improved errors over backward Euler until the time-
step sizes are small enough that Crank–Nicolson no longer exhibits spurious
oscillations (c = 2 in Figure 4). In fact, once the time-steps are small enough
that DSRK are competitive, we are almost within the nonlinear stability
constraint of explicit methods such as SSPRK(2,2) (c = 1 in Figure 4) .

We note that neither Figure 3 nor Figure 4 takes into account the dif-
ferences in computational work required by the various methods. The costs
for DSRK2 and DSRK3 are significantly larger than BE and CN, because
the underlying systems are larger. In the linear case, the size of the DSRK2
system is 2m× 2m and the DSRK3 system is 5m× 5m whereas the BE and
CN systems are only m × m. Even if the cost of solving the system rose
only linearly with the size of the system, the cost is doubled for DSRK2 and
increased five-fold for DSRK3. In reality, the cost may increase more rapidly,
depending on the structure of the implicit system and the method used to
solve the implicit equations. Furthermore, if a nonlinear system is solved,
this cost may increase even further. It is even more difficult to quantify
the increased cost of an implicit method over that of an explicit method.
However, it is clear that implicit methods in general and DSRK methods in
particular are significantly more costly than explicit methods.

We note that phase errors were also investigated to see if the DSRK
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Figure 3: Convergence study for linear advection of a sine wave to tf = 1.
The spatial discretization here is first-order upwinding with 64 points (left)
and 2048 points (right). We indicate the spatial discretization error with a
dotted horizontal line.

schemes had improved phase error properties compared to BE but they do
not. In general, for large ∆t, DSRK methods behave similarly in many
aspects to backward Euler.

In summary, our results on the advection equation show that although the
DSRK method is formally high order, in practice we encounter a reduction of
order for large time-steps. If one requires large time-steps and no oscillations,
backward Euler is a good choice. If on the other hand, one requires accuracy,
an explicit high-order SSP method is probably better suited. We will see that
these results are typical for DSRK schemes.

4.2 Diffusion driven problems

Consider the diffusion or heat equation

ut = νuxx, (15)

with heat coefficient ν on a periodic domain (0, 2π]. We begin by discretizing
the uxx term with second-order centered finite differences to obtain ODE
system (1).

In Figure 5 and Table 4, we consider (15) with smooth initial conditions

u(0, x) = sin(x) + cos(2x).
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Figure 4: Linear advection of a square wave to time tf = 1 using first-order
upwinding and 512 points in space. Note that Crank–Nicolson produces
oscillations during the computation for c > 2. We indicate the spatial dis-
cretization error with a dotted horizontal line.

Once again, we note that the DSRK schemes achieve their design order as ∆t
gets smaller, but for large time-steps they exhibit large errors and reduced
convergence rates.

Figure 6 shows that Crank–Nicolson produces spurious oscillations in the
solution to the heat equation with discontinuous initial conditions (14). Also,
Figure 6 shows that the DSRK schemes are not competitive with backward
Euler until the time-steps are smaller than the explicit stability limit (in this
case, the restrictive ∆t ≤ ∆x2

2ν
shown by the dotted vertical line). Clearly,

DSRK methods exhibit order reduction for this parabolic problem as well.

4.3 The Black–Scholes equation

The Black–Scholes equation [3, 7, 8]

Vτ =
σ

2
S2VSS + rSVS − rV, (16)

is a PDE used in computational finance for determining the fair price V of
an option at stock price S, where σ is the volatility and r is the risk-free
interest rate. Note S is the independent (we can think “spatial”) variable on
the positive half-line and τ is a rescaled time (the actual time runs backwards
from “final conditions”).

We note that for our purposes, (16) is a linear non-constant coefficient
advection-reaction-diffusion equation and we treat it as the ODE system (1)
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Figure 5: Convergence studies for the heat equation with smooth initial
conditions. Left: m = 64, tf = 10, ν = 1

16
. Right: m = 1024, tf = 1, ν = 1

4
.

Spatial discretization uses second-order centered differences and the level of
spatial discretization error is indicated by the horizontal dotted line labeled
“s.d.e.”

discrete error l∞-norm
c N BE CN DSRK2 DSRK3

830 16 0.0127 1.24e-4 0.0127 0.0127
415 32 0.00643 3.09e-5 0.00640 0.00640

. . . . . . . . . . . . . . .
12.97 1024 2.03e-4 3.02e-8 1.76e-4 1.74e-4
6.48 2048 1.02e-4 7.55e-9 7.77e-5 7.55e-5
1 13280 1.57e-5 1.80e-10 5.23e-6 4.28e-6

FE SSP(2,2) SSP(3,3) SSP(5,4)
2 6640 unstable unstable unstable 8.74e-13
1 13280 1.57e-5 3.59e-10 4.42e-13 1.32e-12

Table 4: Convergence study for the heat equation with smooth initial con-
ditions. Here ν = 1/4, m = 1024, tf = 1. The discrete error is computed
against the ODE solution calculated with Matlab’s ode15s. For compari-
son explicit methods are shown near their stability limits around c = 1.
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Figure 6: Heat equation with discontinuous initial conditions using m = 512,
tf = 1, and ν = 1

4
. The spatial discretization in this example is second-order

centered differences.

by approximating the VS and VSS terms with second-order centered finite
differences. We use σ = 0.8, r = 0.1 and for this choice we did not notice
any significant difference between upwind and centered differences for the
advection term. We take the strike price K = 100 and consider a “put”
option where the computational domain and initial conditions are shown
in Figure 7. The right-hand boundary condition is an approximation to
limS→∞ V (S) = 0, specifically V (Smax) = 0. At the left-hand end of the
domain, we note that (16) reduces to

V̇0 = −rV0,

and thus it is both natural and convenient to simply solve this ODE coupled
with the other components Vj as part of our method-of-lines computation.

Figure 8 shows the problem of oscillations which show up in a Crank–
Nicolson calculation of the Black–Scholes problem. The oscillations are am-
plified in “the Greeks” i.e., the first and second spatial derivatives. We note
this is a well-known phenomenon [4] associated with the CN numerical solu-
tion of (16); in practice, Rannacher time-stepping consisting of several initial
steps of BE followed by CN steps [9] is often used to avoid these oscillations.
DSRK schemes also avoid oscillations but are not likely competitive with
Rannacher time-stepping in terms of efficiency due to the order reduction
illustrated in Table 5. A great number of time-steps (N = 17800 in the case
considered in Table 5) are required before the Crank–Nicolson calculation is
completely oscillation-free in “the Greeks”.
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Figure 7: Computational domain and initial conditions for the Black–Scholes
problem.

discrete error l∞-norm
N BE order CN order DSRK2 order DSRK3 order
32 0.0655 0.115 * 0.0654 0.0653
64 0.0328 1.00 0.0451 * 1.35 0.0327 1.00 0.0326 1.00
128 0.0164 1.00 8.63e-3 * 2.39 0.0163 1.00 0.0163 1.00
256 8.20e-3 1.00 8.74e-5 * 6.63 8.07e-3 1.01 8.06e-3 1.02
512 4.10e-3 1.00 1.95e-6 * 5.49 3.97e-3 1.02 3.96e-3 1.03
1024 2.05e-3 1.00 4.88e-7 * 2.00 1.92e-3 1.05 1.91e-3 1.05
. . . . . . . . . . . . . . .
8192 2.56e-4 7.62e-9 * 1.60e-4 1.51e-4
16384 1.28e-4 1.00 1.90e-9 * 2.00 5.66e-5 1.50 4.98e-5 1.60
32768 6.41e-5 1.00 4.74e-10 2.00 1.78e-5 1.67 1.67e-5 1.58

Table 5: Black–Scholes convergence study. * indicates oscillations in “the
Greeks”. Here, m = 1600, Smax = 400, ∆x = 1

4
, tf = 0.25, σ = 0.8, r = 0.1,

and strike price K = 100. The discrete error is calculated against a numerical
solution from Matlab’s ode15s with AbsTol = 1 × 10−14, RelTol = 1 ×
10−13.
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Figure 8: Numerical solutions of the Black–Scholes problem magnified near
the strike price of K = 100 with m = 2000, Tf = 0.25, σ = 0.8, r = 0.1, and
Smax = 500 using N time-steps. From left-to-right: the option price V , the
option δ (i.e., VS) and the option γ (i.e., VSS). Note that Crank–Nicolson
exhibits oscillations with N = 64 whereas BE and the DSRK schemes appear
free of oscillation even with the larger time-steps corresponding to N = 8.
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We note that explicit methods are not practical for this problem because
of the excessive linear stability restriction imposed by the diffusion term
in (16). If an oscillation-free calculation is desired, then backward Euler
is preferred over DSRK methods since DSRK methods cost more and offer
essentially the same first-order convergence rates for step-sizes of practical
interest. Moreover, DSRK schemes can offer little practical advantage over
current Rannacher time-stepping techniques which attempt to combine the
best aspects of backward Euler and Crank–Nicolson.

4.4 Hyperbolic conservation laws: Burgers’ equation

Up to now we have dealt exclusively with linear problems. In this Section
we consider Burgers’ equation

ut = −f(u)x = −

(

1

2
u2

)

x

,

with initial condition u(0, x) = 1
2
−1

4
sin(πx) on the periodic domain x ∈ [0, 2).

The solution is a right-travelling, steepening shock. We discretize −f(u)x

using a conservative simple upwind approximation

−f(u)x ≈ −
1

∆x

(

f̃i+ 1

2

− f̃i− 1

2

)

= −
1

∆x
(f(ui)− f(ui−)) .

Figure 9 shows that Crank–Nicolson produces spurious oscillations in the
wake of the shock, for c = 8 (in fact, we observe oscillations from CN for
c ≥ 4 as noted in Table 6). As expected, BE, DSRK2 and DSRK3 produce
a non-oscillatory TVD solution. Table 6 shows a convergence study for this
problem which illustrates the familiar pattern of order reduction.

Notice, in particular, that for any time-step size considered, one of BE or
CN gives non-oscillatory results with smaller errors than the DSRK schemes
considered here. However, for small time-steps, the explicit methods clearly
outperform the other choices.

4.5 The van der Pol equation

The appearance of order reduction in DSRK computations is a disappointing
phenomenon. It implies that DSRK methods are not likely a appropriate
choice for a time-stepping scheme, because they cannot compete with BE
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Figure 9: Burgers’ equation with Crank–Nicolson (left) and DSRK2 (right)
with m = 256 spatial points and tf = 2, N = 32 (c = 8). For CN, the solution
appears smooth until the shock develops, then an oscillation develops at the
trailing edge of the shock. Note that DSRK2 appears overly dissipative. The
reference solution is calculated with CN and N = 8192.

error (l∞-norm against ref. soln.)
c N BE order CN order DSRK2 order DSRK3 order
16 16 0.192 0.193 * 0.195 0.195
8 32 0.173 0.15 0.109 * 0.82 0.153 0.35 0.154 0.34
4 64 0.140 0.31 0.0399 * 1.45 0.110 0.47 0.114 0.43
2 128 0.0964 0.54 0.0124 1.68 0.0644 0.78 0.0673 0.76
1 256 0.0589 0.71 3.11e-3 2.00 0.0273 1.24 0.0249 1.43

0.5 512 0.0320 0.88 7.72e-4 2.01 8.72e-3 1.65 6.79e-3 1.87
0.25 1024 0.0165 0.96 1.90e-4 2.02 2.45e-3 1.83 1.39e-3 2.29

FE order SSP22 order SSP33 order SSP54 order
4 64 unstable unstable unstable unstable
2 128 unstable unstable unstable 2.50e-4
1 256 0.0880 5.98e-3 3.54e-4 1.36e-5 4.20

0.5 512 0.0377 1.22 1.45e-3 2.04 4.32e-5 3.03 7.63e-7 2.88
0.25 1024 0.0172 1.13 3.63e-4 2.00 5.34e-6 3.02 4.46e-8 4.10
0.125 2048 8.43e-3 1.03 9.08e-5 2.00 6.61e-7 3.01 2.68e-9 4.06

Table 6: Burgers’ equation convergence study. Values for which oscillations
appear are indicated with *. The setup here is the same as in Figure 9 except
the reference solution is calculated with SSPRK(5,4) and N = 8192.
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for large time-steps or with SSP explicit methods for smaller time-steps. To
further study this order reduction, we apply the DSRK methods to the van
der Pol equation. The van der Pol equation is an interesting problem for
testing for reduction of order [24, 22, 28]. The problem can be written as an
ODE initial value problem consisting of two components

y′
1 = y2, (17a)

y′
2 =

1

ǫ

(

−y1 + (1− y2
1)y2

)

, (17b)

with ǫ-dependent initial conditions (see Table 5.1 in [24]) and becomes in-
creasingly stiff as ǫ is decreased.

Figure 10 shows the distinctive “flattening” [24] that occurs during the
convergence studies whereby the error exhibits a region (depending on ǫ) of
first-order behaviour as the step-size decreases before eventually approach-
ing the design order of the method. This suggests that DSRK schemes suffer
from order reduction whereas Crank–Nicolson clearly does not. Before the
flattened region, all the high-order methods produce similar errors. In par-
ticular DSRK3 does no better than the second-order Crank–Nicolson until
after the flattening region. In these figures we observe that DSRK2so2 seems
to suffer from order reduction as well despite its underlying RK scheme hav-
ing stage order two. Higher stage order of the underlying RK scheme is not
sufficient to avoid the order reduction.

5 Conclusions and Future Directions

We studied the performance of unconditionally contractive diagonally split
Runge–Kutta (DSRK) schemes of orders two and three on a variety of archety-
pal test cases. The numerical tests verified the asymptotic order of the
schemes as well as the unconditional contractivity property. However, in
every numerical experiment, the DSRK methods were out-performed by the
first-order backward Euler (BE) scheme when ∆t > 2∆tFE, and by explicit
Runge–Kutta methods or Crank-Nicolson (CN) when ∆t ≤ 2∆tFE. At larger
time-steps, the DSRK schemes are strong stability preserving (SSP) but suf-
fer from order reduction, making BE a better choice. At small step-sizes,
CN and explicit SSPRK methods are SSP, and produce far more accurate
results at a smaller computational cost. It is tempting to assume that the
order reduction occurs because unconditionally contractive DSRK methods
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Figure 10: A convergence study on the van der Pol equation. Error shown
is in the second component, where we have taken ǫ = 1 × 10−3 (left) and
ǫ = 1 × 10−4 (right). Top row shows the methods studies in this work.
Bottom row shows the behavior of the RK schemes underlying each of the
DSRK schemes.
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have underlying Runge–Kutta schemes which necessarily have low stage or-
der; however our numerical experiments with the (conditionally contractive)
DSRK2so2 method show that order reduction occurs even when the under-
lying method has higher stage order. It is therefore reasonable to assume
that the splitting itself may be responsible for the order reduction, and per-
haps that new stage order conditions involving the W coefficients must be
introduced.

We investigated the class of unconditionally contractive DSRK methods
using the BARON optimization software and found that an uncondition-
ally contractive four-stage fourth-order method is unlikely to exist. A more
promising avenue would be to search for a five-stage fourth-order DSRK
scheme. However, such a method would likely suffer from order reduction as
well, and will therefore not be of much use.

The class of unconditionally contractive DSRK methods does not produce
viable alternatives to well-established conditionally SSP Runge–Kutta and
linear multistep methods. Future research will focus on implicit Runge–
Kutta and DSRK methods which are not unconditionally contractive, but
which may have a large allowable step-size, ideally without suffering from
order reduction.
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