
Journal of Scientific Computing, Vol. 15, No. 4, 2000

Solving A x
�
=b

�
Using a Modified Conjugate

Gradient Method Based on Roots of A

Paul F. Fischer1 and Sigal Gottlieb2

Received January 23, 2001; accepted February 14, 2001

We consider the modified conjugate gradient procedure for solving Ax
�
=b

�
in

which the approximation space is based upon the Krylov space associated with
A1�p and b

�
, for any integer p. For the square-root MCG (p=2) we establish a

sharpened bound for the error at each iteration via Chebyshev polynomials in
- A. We discuss the implications of the quickly accumulating effect of an error
in - A b

�
in the initial stage, and find an error bound even in the presence of

such accumulating errors. Although this accumulation of errors may limit the
usefulness of this method when - A b

�
is unknown, it may still be successfully

applied to a variety of small, ``almost-SPD'' problems, and can be used to jump-
start the conjugate gradient method. Finally, we verify these theoretical results
with numerical tests.

KEY WORDS: Modified conjugate gradient method; conjugate gradient
method; Krylov space; convergence rate; stability.

1. INTRODUCTION

The modified conjugate gradient (MCG) method is based on the standard
conjugate gradient (CG) method, which solves Ax

�
=b

�
(where A # Rn_n is

symmetric positive definite) iteratively. At the k th iteration of CG, the
solution x

� k comes from the Krylov space

V k=Kk
A, b

�
:=span[b

�
, Ab

�
, A2b

�
,..., Ak&1b

�
]

441

0885-7474�00�1200-0441�18.00�0 � 2000 Plenum Publishing Corporation

1 Math. and CS division, Argonne National Lab, Argonne, Illinois 60439; e-mail: fischer�
mcs.anl.gov

2 Department of Mathematics, UMASS-Dartmouth, North Dartmouth, Massachusetts 02747
and Division of Applied Mathematics, Box F, Brown University, Providence, Rhode Island
02912; e-mail: sg�cfm.brown.edu

In exact arithmetic, the CG method finds the best fit solution at each itera-
tion [Lanczos (1952)]. That is, at the kth iteration, x

� k # V k satisfies

&x
�
&x

� k &A�&x
�
&v

�
&A \v

�
V k (1.1)

where the A-norm is given by &w
�
&A=(w

�
TAw

�
)1�2. As a result of this best fit

property and the polynomial form of the Krylov space, the error can be
bounded as [Birkhoff and Lynch (1984); Golub and Van Loan (1989)]:

&x
�
&x

� k &A

&x
�
&x

� 0&A
�2 \- }A &1

- }A +1+
k

(1.2)

where }A is the condition number (the ratio of the largest eigenvalue to the
smallest eigenvalue) of the matrix A. To improve upon the convergence
rate, we must either change the condition number of the matrix A by pre-
conditioning, or change the approximation space.

In Gottlieb and Fischer (1998) we presented a MCG method, which
uses a finite-term recurrence and one multiplication by the matrix A per
iteration to find the best-fit solution in the alternative approximation space,
x
� k # Kk

- A, b
�
=span[b

�
, - A b

�
, (- A)2 b

�
,..., (- A)k&1 b

�
]. This approximation

space suggests an (optimal) error bound

&x
�
&x

� k &A

&x
�
&x

� 0&A
�2 \- }M &1

- }M +1+
k

(1.3)

which is based on }M , the condition number of M=- A. This error bound
would be a significant improvement, since }M=- }A . With the usual
initial guess x

� 0=0, we previously obtained the error bound

&x
�
&x

� k &A

&x
�
&A

�2(k}M+1) \- }M &1

- }M +1+
k

(1.4)

which is the optimal error bound multiplied by a factor which depends
linearly on the condition number and the iterate. In this work, we sharpen
the previous error bound to

&x
�
&x

� k &A

&x
�
&A

�2(2k+1) \- }M &1

- }M +1+
k

(1.5)

which is a significant improvement, as the multiplicative factor now
depends linearly only on the iterate, and there is no additional condition
number dependence.

442 Fischer and Gottlieb

The idea is generalizable to the case where a series of vectors [b
�
, A1�pb

�
,

A2�pb
�
,..., A(p&1)�pb

�
] are known initially. In that case, at each iteration the

modified method finds the best fit in the Krylov space V k=Kk
A, b

�
:=

span[b
�
, A1�pb

�
, A2�pb

�
,..., A(k&1)�pb

�
]. This is achieved with a finite term

recurrence and only one matrix-vector multiplication per iteration. This
approach will also be used to study the non-iterative approximation based
on this series of vectors.

In theory, the MCG method could always be used instead of the CG
method. In practice, however, the need for A1�pb

�
limits the use of this

method. However, if A1�pb
�

can be approximated well and few iterations are
needed, MCG may yield the optimal results. We will show analytically and
numerically, (for p=2), that the error in this initial approximation builds
up at each iteration and adversely affects the convergence rate. At worst,
the method still converges as 1�p the rate of CG (i.e., every p th iteration
is a CG iteration). This suggests that even where the MCG method is not
the optimal choice, it may be useful for a few iterations, to lower the
residual before switching to the CG method.

2. THE MODIFIED CONJUGATE GRADIENT METHOD AND
THE EFFECT OF ERROR IN - A

We begin with a brief review of the construction of the MCG method
detailed in Gottlieb and Fischer (1998). We define x

� k # V k to be the solu-
tion vector at the k th iteration. Now let e

� k=x
�
&x

� k be the error at the k th
iteration, and let r

� k=A(x
�
&x

� k) be the residual at the k th iteration. Usually
we set x

� 0=0 and so r
� 0=b

�
. Each x

� k is computed by

x
� k=x

� k&1+:k p
�

k (2.1)

For x
� k to be the best fit solution in V k we require

:k=
p
�

T
k b

�
p
�

T
k Ap

�
k

=
p
�

T
k r

� k&1

p
�

T
k Ap

�
k

(2.2)

where p
�

k # V k and [p
�

j] form an A-orthogonal set (i.e., p
�

T
j Ap

�
m=0 for

j{m). To find such a set, p
�

k is chosen by picking a seed vector v
� k # V k and

using Gram�Schmidt orthogonalization with respect to [p
�

j]k&1
1 .

p
�

k=v
� k+ :

k&1

j=1

; j p
�

j (2.3)

443Solving Ax
�
=b

�
Using a Modified Conjugate Gradient Method

where

;j=&
p
�

T
j Av

� k

p
�

T
j Ap

�
j

(2.4)

The proposed square-root MCG (based on - A and b) is obtained by
taking the following sequence of seed vectors

v
� 1=r

� 0 (2.5)

v
� 2=- A r

� 0 (2.6)

v
� k=r

� k&2 , for k>2 (2.7)

which span the Krylov space K- A, b
�
, and reduce (2.3) to the finite term

recurrence

p
�

k=v
� k+;k&3 p

�
k&3+;k&2 p

�
k&2+;k&1 p

�
k&1 (2.8)

What is remarkable about this method is that it has essentially the same
complexity as CG (in terms of matrix-vector products), and achieves a
superior convergence rate by choosing a candidate search direction that is
not the steepest descent, that is, by choosing r

� k&2 rather than the current
residual r

� k&1 .
If a sequence of vectors [An�pb

�
] p&1

n=0 is known, the choice of seed
vectors

v
� j =A(j&1)�pb

�
, for j=1,..., p

v
� k=r

� k& p , for k>p

will yield the Krylov space Kk
A1�p, b

�
, and a finite term recurrence

p
�

k=v
� k+ :

2p&1

j=1

;k& j p
�

k& j (2.9)

We expect this method to have an error bound which depends upon

\- (}A)1�p&1

- (}A)1�p+1+
k

(2.10)

This approach also suggests an error bound for a non-iterative approxima-
tion to the solution of Ax

�
=b

�
. Given a sequence of vectors [An�pb

�
] p&1

n=0 , we
can build the best-fit polynomial using the MCG procedure. This approxi-
mation will have an error bound asymptotically equal to (2.10) with
k= p&1.

444 Fischer and Gottlieb

The previous discussion assumed that we can readily find - A b
�
, or

that some sequence of roots [An�p] p&1
n=1 is known. Unfortunately, this is not

always the case, and these quantities must usually be approximated. We
now turn our attention to the case where - A b

�
is approximated by Qb

�
,

with some error E=Q&- A. The approximation space from which the
(best-fit) k th iterate is taken is now V k=span[[b

�
, Ab

�
, A2b

�
,..., A[(k&1)�2]b

�
]

_ [Qb
�
, AQb

�
, A2Qb

�
,..., A[(k&2)�2]Qb

�
]], where [n] denotes the integer part

of n. The k th iterate may be written as:

x
� k= :

[(k&1)�2]

j=0

cjA jb
�
+ :

[(k&2)�2]

j=0

djA jQb
�

=Pk&1(- A) b
�
+P� [(k&2)�2](A) Eb

�

Clearly, if the error E=0, then the first polynomial Pk&1(- A) b
�

is the
MCG best fit polynomial. The second polynomial P� (k&1)�2&1(A) can be
understood as amplifying the error E introduced by approximating - A b

�
,

and it is the odd part of the first polynomial. For the class of functions
traditionally used to bound CG-type methods, we observe that the odd
parts of such polynomials grow quickly with the order of the polynomial
(see Fig. 2.1). This implies that the error introduced by approximating
- A b

�
will grow and destroy the convergence rate. However, this error will

not grow without bound, since if we consider an even polynomial Pk&1(- A),
the polynomial multiplying E would be zero. This approach is equivalent
to the best fit even polynomial in the krylov space of CG so that even with
a large error in approximating - A b

�
, the MCG method would converge at

half the rate of CG, or equivalent to CG at every second iteration. This is
an interesting guarantee on the convergence of MCG regardless of the
initial approximation error. This error analysis suggests that MCG is useful
where E very small and few iterations are needed, such as in the case of a
matrix with few eigenvalues or where few iterations are used to reduce the
residual before starting the CG method, or when the CG method stalls.

This approach is applicable to linear systems BTBx
�
=b

�
for which B is

not symmetric, but is close enough to symmetric so that the simple (and
cheap to compute) approximation - BTBr

1
2 (B+BT) is highly accurate.

For such systems, E is small, and if the number of iterations needed is
small, the initial error will not have a chance to grow and diminish the
convergence rate. Such cases will be discussed in the numerical section. In
Gottlieb and Fischer (1998) we observed instability in the MCG method,
even in the absence of an approximation to - A b

�
. This behavior was

apparent more quickly in codes run with 32-bit precision, and diminished
in 64-bit precision and 128-bit precision. We suggest that this instability

445Solving Ax
�
=b

�
Using a Modified Conjugate Gradient Method

File: 854J 213806 . By:XX . Date:22:03:01 . Time:11:26 LOP8M. V8.B. Page 01:01
Codes: 1914 Signs: 1303 . Length: 44 pic 2 pts, 186 mm

Fig. 2.1. The odd part of the polynomial Qk+1(x) used in the error analysis. This poly-
nomial grows with its order, which implies that the error Eb

�
in the initial approximation of

- A b
�

will be amplified at each iteration.

can be explained as the result of machine-accuracy error in - A b
�
, and can

be resolved only by using higher precision. This idea is validated by the fact
that a series of numerical experiments in which E exists and is diminishing
exhibits similar behavior. This behavior leads to a new view on precondi-
tioning. A class of preconditioners which reduce the size of the relative
error in - A b

�
would help speed convergence. Traditional preconditioning

aims to reduce the condition number of the iteration matrix. This new type
of preconditioning would focus on making the approximation to - A more
accurate. Specifically, for the case A=BTB discussed above, a precondi-
tioner would make the matrix B more symmetric in some sense.

3. A SHARPER ERROR BOUND FOR THE MODIFIED METHOD

Given initial vectors [b
�
, - A b

�
] the square-root MCG method finds

the best fit in a readily computed approximation space, at a fixed cost per
iteration. The ``best fit'' property implies that, in exact arithmetic, strict
error bounds can be computed for the k th iterate, independent of the

446 Fischer and Gottlieb

particular algorithm used to compute x
� k . In this section we derive a

sharper bound for the case where the approximation space is taken as the
Krylov space Kk

M, b
�

associated with the symmetric positive definite (SPD)
matrix M :=- A.

The best-fit property implies that the k th iterate, x
� k # Kk

M, b
�
, is to

satisfy (1.1):

&x
�
&x

� k&A�&x
�
&v

�
&A \v

�
Kk

M, b
�

�&x
�
&Pk&1(M) b

�
&A \Pk&1(x) # Pk&1(x) (3.1)

where Pk&1 is the space of all polynomials of degree k&1 or less in the
argument. Defining r

� k=b
�
&Ax

� k=A(x
�
&x

� k) as the residual at the k th
iteration, we have &x

�
&x

� k&A=&r
� k

&A&1 . The definition of M and (3.1)
imply

For all Pk&1(M) # Pk&1(M):

&x
�
&x

� k&A�&b
�
&M2Pk&1(M) b

�
&A&1

�&I&M2Pk&1(M)&A&1 &b
�
&A&1

=&I&M2Pk&1(M)&A&1 &x
�
&A (3.2)

where the matrix norm, & }&A&1 , is the natural norm induced by the same
vector norm. If M and A are any two SPD matrices which commute, and
Q(M) is any polynomial in M, a straightforward calculation reveals that
&Q(M)&A&1=&Q(M)&2=\(Q(M)), where \(Q) is spectral radius of Q.
Consequently, an upper bound on &x

�
&x

� k&A can be derived by choosing
a polynomial Q(M) :=I&M2Pk&1(M) which minimizes \(Q). Denoting
the eigenvalues of M by +i , where 0<+1� } } } �+n , we have

\=max
i

|Q(+i)|� max
+1�+�+n

|Q(+)| (3.3)

While the choice of Pk&1 is arbitrary up to the maximal degree, k&1,
the choice of Q(x) is more restricted. Let P1, 0

k+1 be the subset of Pk+1

defined by

P1, 0
k+1=[q : q(0)=1; q$(0)=0; q # Pk+1] (3.4)

Clearly, Q # P1, 0
k+1 . Combining (3.2) and (3.3), one obtains

&x
�
&x

� k &A

&x
�
&A

� min
Q # P1, 0

k+1

max
+1�+�+n

|Q(+)| (3.5)

447Solving Ax
�
=b

�
Using a Modified Conjugate Gradient Method

The class of polynomials defined by (3.4) has been studied extensively by
B. Fischer under the heading of Hermite kernel polynomials. Although
(3.5) is not addressed directly, it is noted in B. Fischer (1996) that polyno-
mials in P1, 0

k+1 can be expressed as a linear combination of the same trans-
lated and scaled Chebyshev polynomials T� k (defined below) that were used
to derive (1.2). Although not the unique minimizer, the bound resulting
from such a combination will be very close to optimal, as we now show.

We denote by T� k the translated and scaled Chebyshev polynomial

T� k(x) :=
Tk \+n++1&2x

+n&+1 +
Tk \+n++1

+n&+1+
(3.6)

where Tk(x) is the Chebyshev polynomial [e.g., Saad (1996)],

Tk(x)= 1
2 ((x+- x2&1)k+(x&- x2&1)k), |x|�1 (3.7)

T� k satisfies the classic minimax problem on [+1 , +n]:

mk := max
+1�+�+n

|T� k(+)|= min
q # P

1
k+1

max
+1�+�+n

|q(+)| (3.8)

where P1
k+1 is the set of polynomials defined by

P1
k+1=[q : q(0)=1; q # Pk+1] (3.9)

Defining _ :=(+n++1)�(+n&+1), note that

mk=
1

Tk(_)
(3.10)

Consider the polynomial Qk+1(x)=:T� k+1(x)+;T� k(x). Since both
T� k+1(x) and T� k(x) have the minimum possible extrema on [+1 , +n], this
is clearly a reasonable starting point for solving the minimax problem (3.5).
In order to satisfy the interpolatory constraints for Qk+1 # P1, 0

k+1 , we must
have

:+;=1

:T� $k+1(0)+;T� $k(0)=0

448 Fischer and Gottlieb

Solving for : and ; yields

Qk+1(x)=
T� $k+1(0) T� k(x)&T� $k(0) T� k+1(x)

T� $k+1(0)&T� $k(0)

Note that T� $k(0) and T� $k+1(0) are of the same sign, whereas T� k+1(+n) and
T� k(+n) are of opposite sign. Thus, we have

max
+1�+�+n

|Qk+1(+)|=
T� $k(0) mk+1+T� $k+1(0) mk

T� $k+1(0)&T� $k(0)

Using (3.6) and (3.10), one obtains the bound

max
+1�+�+n

|Qk+1(+)|=
T $k+1+T $k

TkT $k+1&Tk+1T $k
(3.11)

where the argument of the Chebyshev polynomials and their derivatives is
taken to be _.

To compare this bound to the original CG result (1.2), we recast
(3.11) in terms of }M :=+n�+1 , the condition number of M. Defining
a :=_+- _2&1 and b :=_&- _2&1, we note the following identities:

a=
- }M +1

- }M &1

a } b=1

a>b>0 (3.12)

Tk(_)=
1
2

(ak+bk)

T $k(_)=
k

a&b
(ak&bk)

The denominator of (3.11) is then:

Tk+1T $k&Tk T $k+1

= } k+1
2(a&b)

(ak+bk)(ak+1&bk+1)&
k

2(a&b)
(ak+1+bk+1)(ak&bk) }

=k+
1
2

+
a2k+1&b2k+1

2(a&b)
(3.13)

449Solving Ax
�
=b

�
Using a Modified Conjugate Gradient Method

while the numerator becomes

T $k+T $k+1=
k

2(a&b)
(ak&bk)+

k+1
2(a&b)

(ak+1&bk+1) (3.14)

Combining (3.13) and (3.14) yields

max
+1�+�+n

|Qk+1(+)|=
k(ak&bk)+(k+1)(ak+1&bk+1)
(a&b)(k+ 1

2)+ 1
2 (a2k+1&b2k+1)

�
k(ak&bk)+(k+1)(ak+1&bk+1)

1
2 (a2k+1&b2k+1)

=
2k(ak&bk)

(a2k+1&b2k+1)
+

2(k+1)(ak+1&bk+1)
(a2k+1&b2k+1)

=
2k(ak&bk)

ak+1ak&ak+1bk+(ak+1bk&bk+1bk)

+
2(k+1)(ak+1&bk+1)

akak+1&akbk+1+(akbk+1&bkbk+1)

�
2k(ak&bk)

ak+1ak&ak+1bk+
2(k+1)(ak+1&bk+1)

akak+1&akbk+1

=
2k

ak+1+
2(k+1)

ak

�
2(2k+1)

ak (3.15)

Taking (3.15) in conjunction with the first of the identities (3.12), we
obtain the desired result

&x
�
&x

� k &A

&x
�
&A

�2(2k+1) \- }M &1

- }M +1+
k

(3.16)

Although this bound has an extra factor of (2k+1) not present in (1.2),
the fact that it is based upon }M=- }A implies that the modified approach
should yield a much better convergence rate than the standard CG algo-
rithm. A comparison of this new error bound (3.16), the previous error
bound (1.4), the optimal error bound (1.3) and the CG error bound (1.2)
is shown in Fig. 3.1.

450 Fischer and Gottlieb

File: 854J 213811 . By:XX . Date:22:03:01 . Time:11:26 LOP8M. V8.B. Page 01:01
Codes: 1721 Signs: 1037 . Length: 44 pic 2 pts, 186 mm

Fig. 3.1. Comparison of the CG and MCG error bounds. The graph shows the log(error)
as a function of the number of iterations. Clearly, the MCG bounds show the error decaying
at a rate which is a significant improvement over the error decay rate associated with CG.

4. NUMERICAL EXPERIMENTS

Example 1. The MCG and CG methods are applied to the problem
Ax

�
=b

�
where A # R1600_1600 is the two dimensional Laplacian operator

given by second-order finite differences on a regular array of points:

(Av) i, j=4vi, j&vi+1, j&vi&1, j&vi, j+1&vi, j&1

with corresponding Dirichlet boundary conditions. The right hand side b
�

is
given by

bj=100 sin(100 cos(j))

In this case, the square-root of the matrix A is unknown, but is approxi-
mated to a high degree of accuracy, using a method developed by van der
Vorst (1987). The performance of the MCG method is compared to that of
the standard CG. The initial behavior of MCG is exactly as predicted
(Fig. 4.1, right), following along the error-bound almost exactly.

451Solving Ax
�
=b

�
Using a Modified Conjugate Gradient Method

File: 854J 213812 . By:XX . Date:22:03:01 . Time:11:27 LOP8M. V8.B. Page 01:01
Codes: 1935 Signs: 955 . Length: 44 pic 2 pts, 186 mm

Fig. 4.1. This is a comparison of the performance of MCG and CG for Example 1, and the
theoretical error bounds of MCG and CG. the initial convergence of MCG matches perfectly
with the optimal error bound initially (right). MCG initially decays as predicted by the error
bound and outperforms CG, but later (left) the error associated with the approximation of
- A b

�
grows and causes convergence to slow down. near 100 iterations MCG begins to

converge at half the rate of CG, however, at no point does the error decay at twice the rate
of the CG error bound.

Example 2. MCG and CG are applied to a series of problems of the
form

BTBx
�
=b

�

where B are 150_150 matrices of the form:

2.5 &1+= 0 0 0 } } } 0
&1 2.5 &1+= 0 0 } } } 0

0 &1 2.5 &1+= 0 } } } 0
B=\ } } } } } } } +} } } } } } }

0 0 0 0 &1 2.5 &1+=
0 0 0 0 0 &1 2.5

and =, depending on the case, takes values 10&8�=�10&2. In all cases,
b
�

is given by bj=sin(100 cos(100 j)). The square-root initial vector - A b
�

is
approximated by

- BTB b
�
r

BT+B
2

b
�

452 Fischer and Gottlieb

File: 854J 213813 . By:XX . Date:22:03:01 . Time:11:27 LOP8M. V8.B. Page 01:01
Codes: 1953 Signs: 1366 . Length: 44 pic 2 pts, 186 mm

Fig. 4.2. CG and the square-root MCG were applied as in Example 2, for a few different
values of =. CG behaved almost exactly the same regardless of the value of =, so one repre-
sentative case is shown. The behavior of MCG differed widely depending on the value of =.
When ==10&2, the error buildup diminished the convergence rate after very few iterations. At
the level of ==10&6 and ==10&7, the initial convergence of MCG is a significant improve-
ment for the first 60 or so iterations, at which point there is a crossover, and CG is better than
MCG. However, for ==10&8 MCG is a significant improvement over CG.

Figure 4.2 shows the effect of the error in the square-root by varying =.
When = is small, this approximation is almost exact, and the error-vector E
is small. When = grows, E grows correspondingly. To limit the effect of
round-off error, the MCG codes were run in 128-bit precision. The effect is
remarkably as we expect. The MCG method converges significantly faster
than CG when = is very small. As = grows, we see the MCG method exhibit-
ing slowed convergence at an earlier iteration number. This diminished
convergence causes MCG to converge slower than CG in the cases where
=�10&7.

Example 3. The cube-root MCG, square-root MCG and CG were
used to solve Ax

�
=b

�
where A is a 900_900 diagonal matrix

453Solving Ax
�
=b

�
Using a Modified Conjugate Gradient Method

*1 0 0 0 } } } 0

0 *2 0 0 } } } 0

A=\ } } } } } } +} } } } } }

0 0 0 0 0 *900

with *i given by

(a)

*1=0.034, *2=0.082, *3=0.127, *4=0.155, *5=0.19

*i=0.2+
i&5
895

i=6, 900

(b)

*1=214.827, *2=57.4368, *3=48.5554, *4=35.0624

*5=27.3633, *6=21.8722 *7=17.7489

*i=1.0+15.6624
i&8
892

i=8, 900

Figure 4.3 compares the standard CG method, the square-root MCG and
the cube-root MCG. The performance is as predicted, with the cube-root
method converging fastest, the square-root MCG next and the standard
method last. Although this was an idealized case, in which the matrix was
a diagonal matrix and the square- and cube-roots were calculated directly,
and the MCG codes were run with 128-bit precision, both MCG methods
eventually suffer from instability after the error was below 10&11. This did
not seem to affect convergence, but if 128-bit precision was not used, the
effect of round-off error would be seen much sooner. These two cases show
that the ideal behavior of MCG is indeed as predicted.

5. CONCLUSIONS

We generalize the MCG method to cases where we have a available a
sequence of vectors [b

�
, A1�pb

�
, A2�pb

�
,..., A(p&1)�pb

�
], and discuss the approxi-

mation properties of such a method, as well as that of the non-iterative
approximation based on this sequence. A sharpened bound is obtained for
the square-root case, as well as an analysis of the effect of an error in the
initial approximation of - A b

�
. We suspect that this effect may be a cause

454 Fischer and Gottlieb

File: 854J 213815 . By:XX . Date:22:03:01 . Time:11:27 LOP8M. V8.B. Page 01:01
Codes: 2299 Signs: 1626 . Length: 44 pic 2 pts, 186 mm

Fig. 4.3. The cube-root and square-root MCG methods are compared to CG for the two
van der Vorst matrices (a) and (b) in Example 3, respectively. The MCG methods initially
exceed the optimal bound, but later converge faster, verifying the claim that the bound will
have some iteration-related term multiplied to the optima-bound term we're using. The
diminished convergence; which we explain as the effect of round-off level error in the - A is
not visible, as it occurs after the residual was cut to below 10&11, but it does occur a little
later.

of instability in the MCG method, and suggest that a new approach to pre-
conditioning may resolve this problem. This method is still applicable to
cases in which we are solving BTBx

�
=b

�
where B is close to symmetric, and

the number of iterations needed is small. In the numerical experiments, we
verify that the initial convergence rate of the square-root (p=2) and cube-
root (p=3) MCG is a significant improvement over CG, converging at a
rate which depends upon with the pth-root of the condition number. We
also observe, as predicted, the accumulating effect of an error in - A at the
initial stage, and at worst, equivalence of the convergence rate of MCG to
CG at every second iteration.

ACKNOWLEDGEMENTS

This was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under Contract W-31-
109-Eng-38.

REFERENCES

Birkhoff, G., and Lynch, R. E. (1984). Numerical Solution of Elliptic Problems, SIAM,
Philadelphia.

455Solving Ax
�
=b

�
Using a Modified Conjugate Gradient Method

Fischer, B. (1996). Polynomial Based Iteration Methods for Symmetric Linear Systems,
Wiley�Teubner, Chichester, Stuttgart.

Golub, G. H., and Van Loan, C. H. (1989). Matrix Computations, The John Hopkins Univer-
sity Press, Baltimore.

Gottlieb, S., and Fischer, P. F. (1998). A modified conjugate gradient method for the solution
of Ax=b based upon b and A1�2b. J. of Sci. Comput. 13(2), 173�183.

Lanczos, C. (1952). Solution of systems of linear equations by minimized iterations. J. of
Research of the National Bureau of Standards 49, 33�53.

O'Leary, D. P. (1980). The block conjugate gradient algorithm and related methods. Linear
Algebra and its Appl. 29, 293�322.

Simon, H. D. (1984). The Lanczos method with partial reorthogonalization. Math. of Comp.
42, 115�142.

Van der Vorst, H. A. (1987). An iterative solution method for solving f (A) x
�
=b

�
, using Krylov

subspace information obtained for the symmetric positive definite matrix A. J. of Comp.
and Appl. Math. 18, 249�263.

456 Fischer and Gottlieb

83

0885-7474/03/0200-0083/0 © 2003 Plenum Publishing Corporation

Journal of Scientific Computing, Vol. 18, No. 1, February 2003 (© 2003)

Strong Stability Preserving Properties of Runge–Kutta
Time Discretization Methods for Linear Constant
Coefficient Operators

Sigal Gottlieb1 and Lee-Ad J. Gottlieb1

1Department of Mathematics, University of Massachusetts at Dartmouth, Dartmouth,
Massachusetts 02747 and Division of Applied Mathematics, Brown University, Providence,
Rhode Island 02912. E-mail: sgottlieb@umassd.edu

Received August 21, 2001; accepted (in revised form) January 11, 2002

Strong stability preserving (SSP) high order Runge–Kutta time discretizations
were developed for use with semi-discrete method of lines approximations of
hyperbolic partial differential equations, and have proven useful in many other
applications. These high order time discretization methods preserve the strong
stability properties of first order explicit Euler time stepping. In this paper we
analyze the SSP properties of Runge Kutta methods for the ordinary differential
equation ut=Lu where L is a linear operator. We present optimal SSP Runge–
Kutta methods as well as a bound on the optimal timestep restriction.
Furthermore, we extend the class of SSP Runge–Kutta methods for linear
operators to include the case of time dependent boundary conditions, or a time
dependent forcing term.

KEY WORDS: Strong stability preserving; Runge–Kutta methods; high order
accuracy; time discretization.

1. INTRODUCTION

1.1. The History of SSP Methods

In solving time dependent hyperbolic Partial Differential Equations (PDEs)
it is common practice to first discretize the spatial variables to obtain a
semi-discrete method of lines scheme. This is then an Ordinary Differential
Equation (ODE) system in the time variable which can be discretized by an

ODE solver. The simplest such ODE solver is the forward-Euler method
and it is used widely for analysis of the nonlinear stability properties of the
spatial discretization. The nonlinear stability properties are essential, since
hyperbolic problems typically have discontinuous solutions and a stronger
measure than linear stability is thus required. However, while forward-
Euler is ideal for analysis of the stability properties of a given spatial
discretization, it is only first order accurate. In practice, high order time
discretizations which preserve all the stability properties of forward-Euler,
are needed.
In [15, 14, 4 and 5] high order strong stability preserving (SSP) time

discretization methods for the semi-discrete method of lines approxima-
tions of PDEs were developed. These methods are derived by assuming that
the first order forward-Euler time discretization of the method of lines
ODE is strongly stable under a certain norm, when the time step Dt is
suitably restricted, and then finding higher order time discretizations that
maintain strong stability for the same norm, perhaps under a different time
step restriction.
SSP Runge Kutta methods were first considered for the solution of the

hyperbolic equation

ut+f(u)x=0 (1.1)

where the spatial derivative, f(u)x, is discretized by a TVD finite difference
or finite element approximation denoted −L(u) ([9, 12, 18, 3, 10] and
[19]). In the process of discretizing, we have a spatial mesh made up of
points denoted xj and a temporal mesh of points denoted tn. When dis-
cussing the fully discretized solution, we use the notation unj to mean the
approximation to the exact solution u(xj, tn), and the corresponding vector
un containing all the spatial information at a given time is given com-
ponentwise by un=[unj]. The exact spatial discretization L(u) above is
irrelevant, as long as it has the property that when it is combined with the
first order forward-Euler time discretization,

un+1=un+Dt L(un) (1.2)

the Total Variation (TV) of the one-dimensional discrete solution un does
not increase in time, i.e., the following, so called Total Variation Diminish-
ing (TVD) property, holds

TV(un+1) [TV(un), TV(un) :=C
j
|unj+1−u

n
j | (1.3)

84 Gottlieb and Gottlieb

for a sufficiently small time step Dt dictated by the CFL condition (see
[1, 8]),

Dt [DtFE (1.4)

Here, DtFE is the largest allowable step size that will guarantee that the
stability property above will hold for forward-Euler with the given PDE
and spatial discretization (see [14]).
The objective of the high order SSP time discretization is to maintain

the strong stability property (1.3) while achieving higher order accuracy in
time, perhaps with a modified CFL restriction (measured here with a CFL
coefficient, c)

Dt [c DtFE (1.5)

Numerical evidence presented in [4] demonstrated that oscillations
may occur when using a linearly stable, high-order method which lacks the
strong stability property, even if the same spatial discretization is TVD
when combined with the first-order forward-Euler time-discretization. This
illustrates that it is safer to use a SSP time discretization for solving
hyperbolic problems. After all, SSP methods have the extra assurance of
provable stability and in many cases do not increase the computational
cost. In particular, SSP methods up to (and including) third order for
ODEs with nonlinear operators L, and all SSP methods for ODEs with
linear constant-coefficient operators do not require any additional stages or
function evaluations [5].
In the initial development of these methods, ([15] and [14]) the rele-

vant norm was the total variation norm: the forward-Euler time discretiza-
tion of the method of lines ODE was assumed TVD, hence these methods
were called TVD time discretizations. In fact, the essence of this class of
high order time discretizations lies in its ability to maintain the strong sta-
bility in the same norm as the first order forward-Euler version, regardless
of what this norm is, hence ‘‘strong stability preserving (SSP) time discre-
tization’’ is a more suitable term which was first adopted in [5]. Addition-
ally, since SSP methods (as we show below) are convex combinations of the
first-order Euler method, any convex function satisfied by forward-Euler
will be preserved by such high-order time discretizations. Thus, the SSP
property is useful in a wide variety of applications. SSP Runge Kutta
methods can be used whenever a method is needed which preserves any
norm or convex-function property of forward-Euler. Also, although these
methods were developed for use with nonlinear stability properties, they
are equally useful in cases where the relevant operator is linear, and where

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 85

linear norm properties are studied. In this paper we will study the proper-
ties of SSP Runge–Kutta methods for linear constant-coefficient operators.

1.2. SSP Runge–Kutta Methods

In [15], a general m stage Runge–Kutta method for

ut=L(u) (1.6)

is written in the form:

u (0)=un,

u (i)=C
i−1

k=0
(ai, ku (k)+Dt bi, kL(u(k))), ai, k \ 0, i=1,..., m (1.7)

un+1=u (m)

This way of writing the method has become standard for SSP purposes
(e.g., [14, 15, 4, 5]), and was shown ([15]) to be equivalent to the classical
Runge–Kutta methods as written in [2]. The restriction on the coefficients
ai, k allows the SSP property to be achieved ([14]). Clearly, if all the coef-
ficients bi, k are nonnegative (bi, k \ 0), and the consistency requirement

C
i−1

k=0
ai, k=1

is satisfied for any i, it follows that the intermediate stages in (1.7), u (i),
amount to convex combinations of forward-Euler steps, with Dt replaced
by bi, kai, k Dt. We thus conclude

Lemma 1.1 [15]. If the forward-Euler method (1.2) is strongly
stable under the CFL restriction (1.4), ||un+Dt L(un)|| [||un||, then the Runge–
Kutta method (1.7) with bi, k \ 0, and bi, k=0 whenever ai, k=0, is SSP,
||un+1|| [||un||, provided the following CFL restriction (1.5) is fulfilled,

Dt [c DtFE, c=min
i, k

ai, k

bi, k
-bi, k] 0 (1.8)

If some of the bi, k’s are negative, we need to introduce an associated
operator L̃ corresponding to stepping backward in time. The requirement
for L̃ is that it approximates the same spatial derivative(s) as L, but that

86 Gottlieb and Gottlieb

the strong stability property holds ||un+1|| [||un||, (either with respect to the
TV or another relevant norm), for the first order Euler scheme, solved
backward in time, i.e.,

un+1=un−Dt L̃(un) (1.9)

This can be achieved, for hyperbolic conservation laws, by solving the time-
negative version of (1.1),

ut=f(u)x (1.10)

Numerically, the only difference is the change of upwind direction. Clearly,
L̃ can be computed with the same cost as that of computing L. We then
have the following lemma.

Lemma 1.2 [15]. If the forward-Euler method combined with the
spatial discretization L in (1.2) is strongly stable under the CFL restriction
(1.4), ||un+Dt L(un)|| [||un||, and if Euler’s method solved backward in time
in combination with the spatial discretization L̃ in (1.9) is also strongly
stable under the CFL restriction (1.4), ||un−Dt L̃(un)|| [||un||, then the Runge–
Kutta method (1.7) is SSP, i.e., ||un+1|| [||un||, under the CFL restriction
(1.5),

Dt [c DtFE, c=min
i, k

ai, k

|bi, k |
, -bi, k] 0 (1.11)

provided bi, k=0 whenever ai, k=0, and bi, kL is replaced by bi, kL̃ when-
ever bi, k is negative.

Notice that, if for the same k, both L(u (k)) and L̃(u (k)) must be
computed, the cost as well as storage requirement for this k is doubled. For
this reason, we would like to avoid negative bi, k as much as possible. In
[4] it was shown any four-stage fourth-order Runge–Kutta method for a
nonlinear ODE will have at least one negative coefficient. In [17] it was
shown that any Runge–Kutta method of fifth order or above for a non-
linear ODE will have at least one negative coefficient. Thus, we realize that
for Runge–Kutta methods for nonlinear ODEs, negative coefficients would
have to be considered. This is not, however, the case for Runge–Kutta
methods for linear ODEs. In the linear constant coefficient case, we may
have all nonnegative coefficients [5], and we proceed by discussing this
case.

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 87

2. LINEAR CONSTANT COEFFICIENT SSP RUNGE–KUTTA
METHODS OF ARBITRARY ORDER

Although SSP methods were developed for use with nonlinear stability
properties, they are equally useful in cases where the relevant operator is
linear, and where linear norm properties are studied. For example, SSP
methods are useful where weighted L2 higher order discretizations of spec-
tral schemes are discussed ([7, 5, 11]). In [5] we found optimal N stage,
Nth order SSP Runge–Kutta methods of arbitrary order of accuracy for
linear ODEs suitable for solving PDEs with linear spatial discretizations.
Such methods have optimal CFL number c=1. Raising the CFL number
at the expense of adding another stage is an idea that was tried in [14]. In
parallel to this work, S. Ruuth and R. Spiteri have studied this approach
for nonlinear methods [16] and linear methods [17]. In this section, we
consider linear SSP Runge–Kutta methods which have more stages than
necessary for their order. This additional freedom allows for a higher CFL
number. We present a bound on the optimal CFL number associated with
an m stage, Nth order method. We then present some methods which are
optimal in terms of the CFL restriction.

2.1. Useful Properties of the Linear SSP Runge–Kutta Method

In [5] we constructed a class of optimal (in the sense of CFL number)
SSP Runge–Kutta methods of any order for the ODE (1.6) where L is
linear and time invariant. With a linear L being realized as finite dimen-
sional matrix we denote L(u)=Lu.
The method (1.7) may be rewritten as

u (i)=11+C
i−1

k=0
Ai, k(Dt L)k+12 u (0), i=1,..., m (2.1)

where

A1, 0=b1, 0, Ai, 0=C
i−1

k=1
ai, kAk, 0+C

i−1

k=0
bi, k

Ai, k= C
i−1

j=k+1
ai, jAj, k+C

i−1

j=k
bi, jAj, k−1, k=1,..., i−1

A method of this type will be SSP for a sufficiently small time step Dt,
if all the coefficients ai, k and bi, k are nonnegative. The CFL number
(c in (1.8)) associated with this method can be written as c=1

m where

88 Gottlieb and Gottlieb

m=maxi, k
bi, k
ai, k
. To facilitate the analysis of the optimal CFL number, we

introduce mi, k=
bi, k
ai, k
. We can make this definition, since the SSP conditions

above require that bi, k=0 whenever ai, k=0. The following lemmas
determine a bound on the relative size of each Ai, k, which depends on m.
These lemmas will later be used to get a bound on the optimal CFL
number.

Lemma 2.1. For any method written in the form (2.1) above,

AM, 0 [Mm

for any 1 [M [m, where m=maxi, k
bi, k
ai, k
.

Proof. Consider that

A1, 0=b1, 0=
b1, 0

a1, 0
=m1, 0 [m

Now proceed by induction: Assume Aj, 0 [jm -j=1,..., M−1 then

AM, 0= C
M−1

j=1
aM, jAj, 0+ C

M−1

j=0
bM, j

[(M−1) m C
M−1

j=1
aM, j+m C

M−1

j=0
aM, j

[Mm i

Lemma 2.2. For any method written in the form (2.1) above,

AM, 1 [
M−1
2
mAM, 0

for any 1 [M [m, where m=maxi, k
bi, k
ai, k
.

Proof.

A2, 1=b2, 1A1, 0=
1
2 (b2, 1A1, 0+b2, 1b1, 0)

=1
2 (m2, 1a2, 1A1, 0+b2, 1m1, 0)

[1
2 (m2, 1a2, 1A1, 0+b2, 1m1, 0+mb2, 0)

[1
2 m(a2, 1A1, 0+b2, 1+b2, 0)

=1
2 mA2, 0

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 89

Proceed by induction: assume

Aj1 [
j−1
2
mAj, 0 for 2 [j [M−1

then

AM, 1= C
M−1

j=2
aM, jAj, 1+ C

M−1

j=1
bM, jAj, 0

[C
M−1

j=2
aM, j
j−1
2
mAj, 0+ C

M−1

j=1
mM, jaM, jAj, 0

[
M−2
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1
mM, jaM, jAj, 0

where the zero term aM, j
j−1
2 mAj, 0 for j=1 was added in the first summation.

=
M−1
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1

1mM, j−
1
2
m2 aM, jAj, 0

[
M−1
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1

1mM, j−
1
2
mM, j 2 aM, jAj, 0

=
M−1
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1

1
2
mM, jaM, jAj, 0

[
M−1
2
m C
M−1

j=1
aM, jAj, 0+

1
2
(M−1) m C

M−1

j=1
mM, jaM, j

=
M−1
2
m C
M−1

j=1
aM, jAj, 0+

1
2
(M−1) m C

M−1

j=1
bM, j

[
M−1
2
m 1 C

M−1

j=1
aM, jAj, 0+ C

M−1

j=0
bM, j 2 where we added

the nonnegative quantity M−12 mbM, 0 to the second summation

=
M−1
2
mAM, 0 i

Lemma 2.3. For any method written in the form (2.1) above,

AM, k [
M−k
k+1

mAM, k−1

90 Gottlieb and Gottlieb

for any 1 [M [m, where m=maxi, k
bi, k
ai, k
.

Proof. Using Lemma 2.2 as the base case, we show that if

Ap, l [
p−l
l+1

mAp, l−1 for 1 [p [M−1 and 1 [l [p−1

then for any k <M−1,

AM, k= C
M−1

j=k+1
aM, jAj, k+ C

M−1

j=k
bM, jAj, k−1

[C
M−1

j=k+1
aM, j

j−k
k+1

mAj, k−1+ C
M−1

j=k
bM, jAj, k−1

= C
M−1

j=k
aM, j

j−k
k+1

mAj, k−1+ C
M−1

j=k
bM, jAj, k−1

where the zero term is added to the first summation

[
M−1−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k
bM, jAj, k−1

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

1bM, j−
1
k+1

maM, j 2 Aj, k−1

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

1mM, j−
1
k+1

m2 aM, jAj, k−1

[
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

1mM, j−
1
k+1

mM, j 2 aM, jAj, k−1

because mM, j [m

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

11− 1
k+1
2 bM, jAj, k−1

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

k
k+1

bM, jAj, k−1

[
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

k
k+1

bM, j
j−k+1
k

mAj, k−2

[
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+

k
k+1

M−k
k
m C
M−1

j=k−1
bM, jAj, k−2

by adding the nonnegative term bM, k−1Ak−1, k−2 to the second summation

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 91

=
M−k
k+1

m 1 C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k−1
bM, jAj, k−2 2

=
M−k
k+1

mAM, k−1

Finally, for the case k=M−1,

AM,M−1=bM,M−1AM−1, M−2

=mM,M−1aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2−

1
M
maM,M−1AM−1, M−2

+mM,M−1aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2+1mM,M−1−

1
M
m2 aM,M−1AM−1, M−2

[
1
M
maM,M−1AM−1, M−2+1mM,M−1−

1
M
mM,M−1 2 aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2+

M−1
M

mM,M−1aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2+

M−1
M

bM,M−1AM−1, M−2

[
1
M
maM,M−1AM−1, M−2+

M−1
M

bM,M−1
M−1−M+2
M−1

mAM−1, M−3

=
1
M
maM,M−1AM−1, M−2+

1
M
mbM,M−1AM−1, M−3

[
1
M
maM,M−1AM−1, M−2+

1
M
mbM,M−1AM−1, M−3

+
1
M
mbM,M−2AM−2, M−3

=
1
M
mAM,M−2 i

92 Gottlieb and Gottlieb

2.2. Upper Bound for the Optimal CFL Number of a m Stage Nth
Order Method

The lemmas in the preceeding section suggest a bound on the optimal
size of the CFL number c, which depends on the number of stages m and
the order N of the method.

Proposition 2.1. Consider the family of m-stage, Nth order SSP
Runge–Kutta methods (1.7) with nonnegative coefficients ai, k and bi, k. The
CFL number c in (1.5) will be, at most, c=m−N+1.

Proof. From the lemmas above, we see that for anyM \ 1

AM, k [
M−k
k+1

mAM, k−1 for 1 [k <M

and

AM, 0 [Mm

For an m-stage method to be Nth order, we must have [5]

Am, n=
1

(n+1)!
for n=0, 1,..., N−1 (2.2)

so we have

1
N!
=Am, N−1 [

m−N+1
N

mAm, N−2=
m+1−N
N

m
1

(N−1)!

Consequently,

1
m+1−N

[m

The CFL number c would be, at most, c=m+1−N. i

This, however, is only a bound, and does not mean that such a CFL
number can actually be obtained. As we will show, there are many cases in
which this optimal CFL number is indeed attainable.

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 93

2.3. Some Optimal SSP Runge–Kutta Methods

In this section we construct some m-stage Nth order SSP methods
with optimal CFL. We start with a first order, m stage method with CFL
c=m:

Proposition 2.2. The m stage method given by

u (0)=un

u (i)=11+Dt
m
L2 u (i−1), i=1,..., m (2.3)

un+1=u (m)

is first order accurate, with CFL number c=m.

Proof. Since for each nonzero ai, k we have ai, k=1 and bi, k=
1
m , and

bi, k=0 whenever ai, k=0, we have bi, k=
1
m ai, k and the CFL number c=m

is clear. To check that the order, we notice that

un+1=11+Dt 1
m
L2

m

un

=11+Dt L+Dt2 m−1
2m

L2+·· ·+
1
mm
DtmLm2 un

since m−12m] 1
2 for any m, we have

un+1=(1+Dt L+O(Dt2)) un

a first order method. i

We note that although this method has a significantly higher CFL
than the standard first order method (which is, of course, the forward-
Euler method), it has a correspondingly higher computational cost.
Although the stepsize can be increased by a factor of m, the computational
cost is also increased by the same factor. We need to look not only at the
CFL number, but also at the number of steps needed. To reflect this, we
define the effective CFL number ceff=src where sr is the ratio of the
number of steps needed for the standard method to the number of steps
needed for the current method. Thus, for the method (2.2) the effective
CFL is, in fact, ceff=1. However, this method is useful as a stepping-stone
for higher order methods.

94 Gottlieb and Gottlieb

For any desired integer optimal CFL number c, a first order (N=1)
method of this CFL number is then given (as in Proposition 2.2 above) by
the m-stage method:

u (0)=un

u (i)=(1+Dt mL) u (i−1), i=1,..., m (2.4)

un+1=u (m)

where m=c and m=1
c . The next proposition shows how we can recursively

build higher order methods. Starting with this method as a building block,
we add one stage and increase the order to two, without changing the CFL
number. Following the procedure detailed below, we can then build m
stage, N=m+1−c order methods with the optimal CFL number c chosen
above. However, there in no guarantee that these methods will prove to be
SSP.

Proposition 2.3. For any given CFL number c=1
m , where m is chosen

so that c is a positive integer, the class of m stage, N=(m+1−c) order
schemes of the form

u (0)=un

u (i)=u (i−1)+m Dt Lu (i−1), i=1,..., m−1

u (m)=C
m−2

k=0
am, ku (k)+am, m−1(u (m−1)+m Dt Lu (m−1)),

un+1=u (m)

(2.5)

is given recursively by the coefficients:

am, k=
1
km
am−1, k−1, k=1,..., m−2

am, m−1=
1
mm
am−1, m−2, am, 0=1− C

m−1

k=1
am, k

(2.6)

where the initial method is that given by the c-stage, first order method
(2.4) above.

Proof. In (2.5), for each 1 [i [m−1

u (i)=u (i−1)+m Dt Lu (i−1)

=(1+m Dt L) i u (0)

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 95

We rewrite the method (2.5) above as

u (n+1)=C
m−2

k=0
am, k(1+m Dt L)k u (0)+am, m−1(1+m Dt L)(1+m Dt L)m−1 u (0)

=1 C
m−2

k=0
am, k C

k

j=0

k!
j! (k−j)!

m j Dt j L j+am, m−1 C
m

j=0

m!
j! (m−j)!

m j Dt j L j2 u (0)

=1 C
m

j=0
am, j+1 C

m−2

j=1
am, j

j!
(j−1)!

+am, m−1
m!

(m−1)!
2 m Dt L

+1 C
m−2

j=2
am, j

j!
2! (j−2)!

+am, m−1
m!

2! (m−2)!
2 m2 Dt2 L2

+1 C
m−2

j=3
am, j

j!
3! (j−3)!

+am, m−1
m!

3! (m−3)!
2 m3 Dt3 L3+·· ·

+1 C
m−2

j=m−2
am, m−2

j!
(j−m+2)! (m−2)!

+am, m−1
m!

(m−2)! 2!
2 mm−2 Dtm−2 Lm−2

+am, m−1
m!

(m−1)!
mm−1 Dtm−1 Lm−1+am, m−1mm Dtm Lm2 u (0)

For this method to be Nth order, we must match this with the desired
expansion

u (n+1)=11+Dt L+1
2
Dt2 L2+

1
3!
Dt3 L3+·· ·+

1
N!
DtN LN+O(DtN+1)2 u (0)

Clearly, for the m-stage method of the type (1.3) to be Nth order, the coef-
ficients ai, k must satisfy the order conditions:

(m)k 1 C
m−2

j=k

j!
(j−k)!

am, j+
(m)!
(m−k)!

am, m−1 2=1

for k=0,..., N. Correspondingly, the coefficients of a (m+1)-stage, (N+1)
order method must satisfy

(m)k 1 C
m−1

j=k

j!
(j−k)!

am+1, j+
(m+1)!
(m+1−k)!

am+1, m 2=1

for k=0,..., N+1.

96 Gottlieb and Gottlieb

Assume that we have a m stage N order method of the type (2.5).
Using the recursive definition we obtain the coefficients of a (m+1) stage
method of the same type. The definition of am+1, 0 guarantees the correct
k=0 order condition for the (m+1) stage method. We proceed to show
that the kth order condition for the m stage method together with the
definition of the coefficients implies the k+1 order condition for the m+1
stage method:

1=(m)k 1 C
m−2

j=k

j!
(j−k)!

am, j+
(m)!
(m−k)!

am, m−1 2

=(m)k 1 C
m−2

j=k

j!
(j−k)!

(j+1) mam+1, j+1+
(m)!
(m−k)!

(m+1) mam+1, m 2

=(m)k+1 1 C
m−1

j=k+1

j!
(j−(k+1))!

am+1, j+
(m+1)!

((m+1)−(k+1))!
am+1, m 2

The k=0,..., N order conditions for the m stage method imply the
k=1,..., N+1 order conditions for the (m+1) stage method, and the k=0
order condition is true by definition. Thus, the order conditions for
k=0,..., N+1 are satisfied and the (m+1) stage method will be of order
(N+1). i

A scheme obtained in this way is SSP with CFL c=1
m as long as the

coefficients ai, k are nonnegative. However, not all the methods generated in
this way are SSP—most of them will have negative ai, k. Nevertheless, this
method is useful for generating the following methods:

Method 1. The following are second order (N=2) SSP methods
with m stages and an optimal CFL number c=m−1:

u (0)=un

u (i)=11+ Dt
m−1

L2 u (i−1), i=1,..., m−1

um=
1
m
u (0)+

m−1
m
11+ Dt

m−1
L2 u (m−1)

un+1=u (m)

(2.7)

The CFL number of this method is clear by inspection. A quick verification
of the order of this scheme follows:

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 97

un+1=
1
m
u (0)+

m−1
m
11+ Dt

m−1
L2

m

u (0)

=1 1
m
+
m−1
m
11+m Dt

m−1
L+
m(m−1)
2

Dt2

(m−1)2
L2+O(Dt3)22 u (0)

=1 1
m
+
m−1
m
+Dt L+

1
2
Dt2 L2+O(Dt3)2 u (0)

=11+Dt L+1
2
Dt2 L2+O(Dt3)2 u (0)

In fact, these methods are also nonlinearly second order [16]. Each such
method uses m stages to attain the order usually obtained by a 2-stage
method, but has CFL number m−1, thus the effective CFL number here is
increased to ceff=

2(m−1)
m .

Method 2. Using the method in proposition (2.3) we generate
methods of any order N with m=N+1 stages, which are SSP with CFL
coefficient c=2. Table I includes the coefficients of these methods. The
effective CFL for these methods is also ceff=

2N
N+1=

2(m−1)
m .

3. LINEAR CONSTANT COEFFICIENT OPERATORS WITH TIME
DEPENDENT FORCING TERMS

As we have seen [5], SSP Runge Kutta methods suitable for a linear,
constant coefficient ODE are easier to generate and have a higher CFL

Table I. Coefficients am, j of the m-Stage N=(m−1) Order SSP Methods of the Form (2.5),
Which Have CFL Number c=2

stages m am, 0 am, 1 am, 2 am, 3 am, 4 am, 5 am, 6 am, 7 am, 8 am, 9

2 0 1
3 1

3 0 2
3

4 0 2
3 0 1

3

5 1
5 0 2

3 0 2
15

6 1
9

2
5 0 4

9 0 2
45

7 1
7

2
9

2
5 0 2

9 0 4
315

8 2
15

2
7

2
9

4
15 0 4

45 0 1
315

9 11
81

4
15

2
7

4
27

2
15 0 4

135 0 2
2835

10 71
525

22
81

4
15

4
21

2
27

4
75 0 8

945 0 2
14175

98 Gottlieb and Gottlieb

than SSP Runge Kutta methods for a nonlinear ODE. We wish to extend
these nice results to the case of a constant linear operator with a time
dependent forcing term. This is a case which also arises in linear PDEs with
time dependent boundary conditions, and can be written as:

ut=Lu+f(t) (3.1)

where u=[ui] is a vector, L=[Li, j] is a constant matrix and f(t)=
[fi(t)] is a vector of functions of t. This ODE is a linear time dependent
ODE and as such, the Runge–Kutta methods derived above for a linear
time-invariant ODE will not have the correct order. The problem is that
the class of RK methods for linear, time dependent ODEs is not equivalent
to those for linear time invariant ODEs [20]. However, if the functions
f(t) can be written in a suitable way, then we can convert the equation
(3.1) to a linear constant-coefficient ODE.
The order conditions for a RK method are derived, without loss of

generality [2], for autonomous system yŒ(x)=g(y(x)). The reason for the
‘‘no loss of generality’’ is that any system of the form

uŒ(x)=h(x, u(x))

can be converted to an autonomous system by setting

y(x)=R x
u(x)
S

and then

yŒ(x)=g(y(x))=g R x
u(x)
S=R 1

h(x, u)
S

In many cases, we can convert equation (3.1) to a linear, constant
coefficient ODE using a similar transformation. We first write (or approx-
imate, if necessary) f(t) as

fi(t)=C
n

j=0
a ijqj(t)=Aq(t)

where A=[Ai, j]=[a
i
j] is a constant matrix and q(t)=[qj(t)] are a set of

functions which have the property that qŒ(t)=Dq(t), where D is a constant
matrix. Once the approximation to f(t) is obtained, the ODE (3.1) can be
converted into the linear, constant coefficient ODE

yt=My(t) (3.2)

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 99

where

y(t)=Rq(t)
u(t)
S

and

M=RD 0

A L
S

Thus, an equation of the form (3.1) can be approximated (or given exactly)
by an linear constant coefficient ODE, and the SSP Runge–Kutta methods
derived in Sec. 2.3 can be applied to this case.

Remark. We stress that we are talking about preserving the stability
properties of forward-Euler as applied to the equation yt=My. It is pos-
sible (indeed, expected) that forward-Euler applied to ut=Lu may satisfy
properties not satisfied when applied to ut=Lu+f(t). It is also possible
that some properties satisfied by forward-Euler when applied to the exact
equation ut=Lu+f(t) may not be satisfied once f(t) is approximated.

Remark. To approximate the functions f(t) we can use the polyno-
mials qj(t)=t j. In this case, the differentiation matrix D is given by

D=R
0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 2 0 · · · 0 0

0 0 3 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · n 0

S
A better approximation can be obtained using the Chebyshev polynomials.
For these polynomials the relationship between the polynomial and its
derivative is given by T −n(x)=;n

j=0 bjTj(x) where (see [6]),

bj=˛
n for j=0, if n is odd

2n for j > 0, if j+n is odd

100 Gottlieb and Gottlieb

In other words, the derivative matrix D takes the form:

D=R
0 0 0 0 0 0 0 0 · · · 0 0

1 0 0 0 0 0 0 0 · · · 0 0

0 4 0 0 0 0 0 0 · · · 0 0

3 0 6 0 0 0 0 0 · · · 0 0

0 8 0 8 0 0 0 0 · · · 0 0

5 0 10 0 10 0 0 0 · · · 0 0

0 12 0 12 0 12 0 0 · · · 0 0

7 0 14 0 14 0 14 0 · · · 0 0

· · · · · · · · · · · · ·

n 0 2n 0 2n 0 2n 0 · · · 2n 0

S if n is odd
or

D=R
0 0 0 0 0 0 0 0 · · · 0 0

1 0 0 0 0 0 0 0 · · · 0 0

0 4 0 0 0 0 0 0 · · · 0 0

3 0 6 0 0 0 0 0 · · · 0 0

0 8 0 8 0 0 0 0 · · · 0 0

5 0 10 0 10 0 0 0 · · · 0 0

0 12 0 12 0 12 0 0 · · · 0 0

7 0 14 0 14 0 14 0 · · · 0 0

· · · · · · · · · · · · ·

0 2n 0 2n 0 2n 0 2n · · · 2n 0

S if n is even
4. NUMERICAL RESULTS

We approximate the solution to the equation

ut=uxx+4t3 0 [x [p (4.1)

with initial condition

u(x, 0)=sin(x)

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 101

and boundary conditions

u(0, t)=u(p, t)=t4

This equation has the exact solution

u(x, t)=t4+e−t sin(x)

We employ the second order centered difference spatial discretization

uxx %
uj+1−2uj+uj−1

Dx2

which gives us the linear operator

L=
1
Dx2
R
−2 1 0 0 0 0 0 0 0 0

1 −2 1 0 0 0 0 0 0 0

0 1 −2 1 0 0 0 0 0 0

0 0 1 −2 1 0 0 0 0 0

· · · · · · · · · ·

0 0 0 0 0 0 0 1 −2 1

0 0 0 0 0 0 0 0 1 −2

S
in

ut=Lu+4t3 (4.2)

To incorporate the time-dependent boundary conditions as well as the time
dependent forcing term, we define

y=R
1

t

t2

t3

t4

u

S

102 Gottlieb and Gottlieb

and the ODE becomes

yt=R
0 0 0 0 0 0 0 0 0 · · · 0 0
1 0 0 0 0 0 0 0 0 · · · 0 0
0 2 0 0 0 0 0 0 0 · · · 0 0
0 0 3 0 0 0 0 0 0 · · · 0 0
0 0 0 4 0 0 0 0 0 · · · 0 0

0 0 0 4 1
Dx2

−2
Dx2

1
Dx2

0 0 · · · 0 0

0 0 0 4 0 1
Dx2

−2
Dx2

1
Dx2

0 · · · 0 0

0 0 0 4 0 0 1
Dx2

−2
Dx2

1
Dx2

· · · 0 0

· · · · · · · · · · · ·

0 0 0 4 0 0 · · · 0 0 1
Dx2

−2
Dx2

1
Dx2

0 0 0 4 1
Dx2

0 · · · 0 0 0 1
Dx2

−2
Dx2

S y
In all these numerical experiments we use Dx= 1

101 . The following time
discretizations were used:

1. The first order forward-Euler discretization:

yn+1=(1+Dt L) yn

2. The 6-stage (m=6), 5th order (N=5) method with CFL number
c=2, given in Table I:

u (0)=un

u (i)=11+Dt
2
L2 u (i−1), i=1,..., 5

u (6)=
1
9
u (0)+

2
5
u (1)+

4
9
u (3)+

2
45
11+Dt

2
L2 u (5)

un+1=u (6)

The high order Runge–Kutta method was compared to the forward-Euler
method. As predicted, the maximal time-step Dt allowed was doubled for

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 103

method (2) compared to the forward-Euler method. In Figs. 1 and 2 we see
the effects of instability in the forward-Euler method when the time-step Dt
is too high. This method is stable when Dt [1

2 Dx
2=Dt1, however once Dt

is increased to Dt=0.51Dx2, the method becomes unstable in 400 iterations
(Fig. 1). If we increase Dt to Dt=3

4 Dx
2, the method becomes unstable in 20

iterations, and when Dt=Dx2, the instability has destroyed the solution
completely by 15 iterations (Fig. 2). The 6-stage, 5th order method is stable
as long as Dt [Dx2. Figure 3 shows that for Dt=Dx2, the method is stable
even at final time t=0.010195, however, when the time step is raised to
Dt=1.15Dx2, the wiggles characteristic of instability are apparent at time
t=0.010146, or 90 iterations. As expected, the time step allowed doubled.

k=0.51

k=0.50

Y x 10-3

x-y
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

900.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Fig. 1. Forward-Euler applied to the test problem. In each case, Dt=k Dx2, where Dx= 1
101 .

When k [0.5 the method is stable. The numerical solution is shown for k=0.5 after 408 time
steps and for k=0.51 after 400 time steps (final time=0.020047).

104 Gottlieb and Gottlieb

k=.75

k=1.0

numerical solution

x

-1.00

-0.80

-0.60

-0.40

-0.20

-0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Fig. 2. Forward-Euler applied to the test problem. Once again, Dt=k Dx2, where Dx= 1
101 .

The method becomes unstable after very few time steps. Results shown are for k=0.75 after
20 time steps and for k=1.0 after 15 time steps. The instability apparent in the k=0.75 case
is worsened in the k=1.0 case. We notice that the extent of instability in this example, for a
fixed final time, depends not on the number of time steps, but mainly on the size of Dt.

An interesting point which arised from the technique used in Sec. 3 is
that the time accuracy of the method is now important from the point of
view of the first few elements in the new vector y. Since the time dependent
boundary conditions or forcing is now not given explicitly, but by its dif-
ferential equation qt=Dq, the time-stepping method must also solve this
ODE. If the time stepping method is not of a high enough order, the
boundary conditions or forcing may not be resolved properly. In Fig. 4
we see the effect of numerically solving the ODE above on the term t4.
A method of fourth order or above will solve this exactly. We see that the

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 105

k=1.15

k=1.0

numerical solution x 10-3

x
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

900.00

950.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Fig. 3. The 5th order, 6 stage SSP Runge–Kutta method with CFL number c=2 is applied
to the test problem. Once again, Dt=k Dx2, where Dx= 1

101 . The CFL of the SSP method
guarantees that this method will be stable with double the maximal allowed step-size for the
forward-Euler method. These results illustrate that the method is stable for Dt [Dx2, and
becomes unstable shortly after. The two curves shown are the numerical solutions for k=1.00
after 104 time steps (final time=0.010195) and for k=1.15 after 90 time steps (final
time=0.010146). The instability is apparent in the k=1.15 case.

fifth order method (2) solves it exactly, but a first order method (1) does
not.

5. CONCLUDING REMARKS

While the development of SSP Runge–Kutta methods was primarily
geared toward nonlinear operators, the wide applicability of these methods

106 Gottlieb and Gottlieb

exact

first order

fifth order

 numerical solution x 10-12

-3x x 10

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

0.00 0.50 1.00 1.50 2.00 2.50

Fig. 4. The technique of Sec. 3 involves rewriting the forcing term 4t3 and the boundary
conditions t4 as the differential equation that governs them. This figure shows how t4 is
approximated by the fifth order method and the first order forward-Euler. As expected, the
fifth order method captures the curve exactly while the first order method does not.

have motivated us to consider SSP methods for linear, time invariant
operators. In [5] we presented a class of linear SSP Runge Kutta methods
with m stages and of order m, which had optimal CFL number c=1. Here
we present a class of first order m stage methods with CFL c=m, a class of
second order m stage methods with CFL c=m−1 and a class of m−1
order, m stage methods with CFL c=2. We show that these methods are
optimal, and that the optimal CFL for a Nth order m stage method is, at
most, c=m−N+1. Although these results are not,in general, extendable
to ODEs with time-dependent linear operators, we extend it to a special

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 107

case of this class, which proves useful for linear PDEs with time dependent
forcing or boundary conditions.

ACKNOWLEDGMENTS

Research supported by NSF Grant DMS-0106743.

REFERENCES

1. Allen, M. B., and Isaacson, E. L. (1998). Numerical Analysis for Applied Science, John
Wiley, New York.

2. Butcher, J. C. (1987). The Numerical Analysis of Ordinary Differential Equations: Runge–
Kutta and General Linear Methods, John Wiley, New York,.

3. Cockburn, B., and Shu, C.-W. (1989). TVB Runge–Kutta local projection discontinuous
Galerkin finite element method for conservation laws II: General framework. Math.
Comp. 52, 411–435.

4. Gottlieb, S., and Shu, C.-W. (1998). Total variation diminishing Runge–Kutta schemes.
Math. Comp. 67, 73–85.

5. Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability preserving high order
time discretization methods. SIAM Rev. 43(1), 89–112.

6. Gottlieb, D., and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory
and Applications, Society for Industrial and Applied Mathematics, Philadelphia.

7. Gottlieb, D., and Tadmor, E. (1991). The CFL condition for spectral approximations to
hyperbolic initial-boundary value problems.Math. Comp. 56, 565–588.

8. Gustafsson, B., Kreiss, H. O., and Oliger, J. (1995). Time Dependent Problems and Differ-
ence Methods, John Wiley, New York.

9. Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys. 49, 357–393.

10. Kurganov, A., and Tadmor, E. (1999). New high-resolution schemes for nonlinear con-
servation laws and related convection-diffusion equations, UCLA CAM Report No.
99-16.

11. Levy, D., and Tadmor, E. (1998). From semi-discrete to fully discrete: Stability of
Runge–Kutta schemes by the energy method. SIAM Rev. 40, 40–73.

12. Osher, S., and Chakravarthy, S. (1984). High resolution schemes and the entropy condi-
tion. SIAM J. Numer. Anal. 21, 955–984.

13. Osher, S., and Tadmor, E. (1988). On the convergence of difference approximations to
scalar conservation laws.Math. Comp. 50, 19–51.

14. Shu, C.-W. (1988). Total-variation-diminishing time discretizations. SIAM J. Sci. Stat.
Comput. 9, 1073–1084.

15. Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory
shock-capturing schemes. J. Comput. Phys. 77, 439–471.

16. Ruuth, S. J., and Spiteri, R. J. (2001). A New Class of Optimal High-Order Strong-Sta-
bility-Preserving Methods, Unpublished manuscript (under review).

17. Ruuth, S. J., and Spiteri, R. J. (2001). Two Barriers on Strong Stability Preserving Time
Discretization Methods, Unpublished manuscript (under review).

18. Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conserva-
tion laws. SIAM J. Numer. Anal. 21, 995–1011.

108 Gottlieb and Gottlieb

19. Tadmor, E. (1997). Approximate solutions of nonlinear conservation laws. In Quarteroni,
A. (ed.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lectures
Notes from CIME Course Cetraro, Italy, Lecture Notes in Mathematics 1697, Springer-
Verlag, 1998, pp. 1–150.

20. Verner, J. H. (1996). High-order explicit Runge–Kutta pairs with low stage order. Appl.
Numer. Methods 22, 345–357.

Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods 109

SIAM REVIEW c© 2001 Society for Industrial and Applied Mathematics
Vol. 43, No. 1, pp. 89–112

Strong Stability-Preserving
High-Order Time Discretization
Methods∗

Sigal Gottlieb†

Chi-Wang Shu‡

Eitan Tadmor§

Abstract. In this paper we review and further develop a class of strong stability-preserving (SSP)
high-order time discretizations for semidiscrete method of lines approximations of par-
tial differential equations. Previously termed TVD (total variation diminishing) time
discretizations, these high-order time discretization methods preserve the strong stabil-
ity properties of first-order Euler time stepping and have proved very useful, especially
in solving hyperbolic partial differential equations. The new developments in this paper
include the construction of optimal explicit SSP linear Runge–Kutta methods, their appli-
cation to the strong stability of coercive approximations, a systematic study of explicit SSP
multistep methods for nonlinear problems, and the study of the SSP property of implicit
Runge–Kutta and multistep methods.

Key words. strong stability preserving, Runge–Kutta methods, multistep methods, high-order accu-
racy, time discretization

AMS subject classifications. 65M20, 65L06

PII. S003614450036757X

1. Introduction. It is a common practice in solving time-dependent partial dif-
ferential equations (PDEs) to first discretize the spatial variables to obtain a semidis-
crete method of lines scheme. This is then an ordinary differential equation (ODE)
system in the time variable, which can be discretized by an ODE solver. A relevant
question here concerns stability. For problems with smooth solutions, usually a linear
stability analysis is adequate. For problems with discontinuous solutions, however,
such as solutions to hyperbolic problems, a stronger measure of stability is usually
required.

∗Received by the editors February 11, 2000; accepted for publication (in revised form) August 1,
2000; published electronically February 2, 2001.

http://www.siam.org/journals/sirev/43-1/36757.html
†Department of Mathematics, University of Massachusetts at Dartmouth, Dartmouth, MA

02747 and Division of Applied Mathematics, Brown University, Providence, RI 02912 (sgottlieb@
umassd.edu). The research of this author was supported by ARO grant DAAG55-97-1-0318 and
NSF grant ECS-9627849.
‡Division of Applied Mathematics, Brown University, Providence, RI 02912 (shu@cfm.brown.edu).

The research of this author was supported by ARO grants DAAG55-97-1-0318 and DAAD19-00-1-
0405, NSF grants DMS-9804985, ECS-9906606, and INT-9601084, NASA Langley grant NAG-1-2070
and contract NAS1-97046 while this author was in residence at ICASE, NASA Langley Research
Center, Hampton, VA 23681-2199, and by AFOSR grant F49620-99-1-0077.
§Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095

(tadmor@math.ucla.edu). The research of this author was supported by NSF grant DMS97-06827
and ONR grant N00014-1-J-1076.

89

90 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

In this paper we review and further develop a class of high-order strong stability-
preserving (SSP) time discretization methods for the semidiscrete method of lines
approximations of PDEs. These time discretization methods were first developed in
[20] and [19] and were called TVD (total variation diminishing) time discretizations.
This class of methods was further developed in [6]. The idea is to assume that the
first-order forward Euler time discretization of the method of lines ODE is strongly
stable under a certain norm when the time step ∆t is suitably restricted, and then
to try to find a higher order time discretization (Runge–Kutta or multistep) that
maintains strong stability for the same norm, perhaps under a different time step
restriction. In [20] and [19], the relevant norm was the total variation norm: the
forward Euler time discretization of the method of lines ODE was assumed to be
TVD, hence the class of high-order time discretization developed there was termed
TVD time discretization. This terminology was also used in [6]. In fact, the essence
of this class of high-order time discretizations lies in its ability to maintain the strong
stability in the same norm as the first-order forward Euler version, hence SSP time
discretization is a more suitable term, which we will use in this paper.

We begin this paper by discussing explicit SSP methods. We first give, in sec-
tion 2, a brief introduction to the setup and basic properties of the methods. We
then move, in section 3, to our new results on optimal SSP Runge–Kutta methods
of arbitrary order of accuracy for linear ODEs suitable for solving PDEs with linear
spatial discretizations. This is used to prove strong stability for a class of well-posed
problems ut = L(u), where the operator L is linear and coercive, improving and
simplifying the proofs for the results in [13]. We review and further develop the re-
sults in [20], [19], and [6] for nonlinear SSP Runge–Kutta methods in section 4 and
for multistep methods in section 5. Section 6 of this paper contains our new results
on implicit SSP schemes. It starts with a numerical example showing the necessity
of preserving the strong stability property of the method, then it moves on to the
analysis of the rather disappointing negative results concerning the nonexistence of
SSP implicit Runge–Kutta or multistep methods of order higher than 1. Concluding
remarks are given in section 7.

2. Explicit SSP Methods.

2.1. Why SSP Methods? Explicit SSP methods were developed in [20] and [19]
(termed TVD time discretizations there) to solve systems of ODEs

d

dt
u = L(u),(2.1)

resulting from a method of lines approximation of the hyperbolic conservation law,

ut = −f(u)x,(2.2)

where the spatial derivative, f(u)x, is discretized by a TVD finite difference or finite
element approximation; see, e.g., [8], [16], [21], [2], [9], and consult [22] for a recent
overview. Denoted by −L(u), it is assumed that the spatial discretization has the
property that when it is combined with the first-order forward Euler time discretiza-
tion,

un+1 = un +∆tL(un),(2.3)

then, for a sufficiently small time step dictated by the Courant–Friedrichs–Levy (CFL)
condition,

∆t ≤ ∆tFE ,(2.4)

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 91

30 40 50 60

-0.5

0.0

0.5

1.0

1.5

x

u exact

TVD

30 40 50 60

-0.5

0.0

0.5

1.0

1.5

x

u exact

non-TVD

Fig. 2.1 Second-order TVD MUSCL spatial discretization. Solution after the shock moves 50 mesh
points. Left: SSP time discretization; right: non-SSP time discretization.

the total variation (TV) of the one-dimensional discrete solution

un :=
∑
j

unj 1{xj− 1
2
≤x≤x

j+ 1
2
}

does not increase in time; i.e., the following so-called TVD property holds:

TV (un+1) ≤ TV (un), TV (un) :=
∑
j

|unj+1 − unj |.(2.5)

The objective of the high-order SSP Runge–Kutta or multistep time discretiza-
tion is to maintain the strong stability property (2.5) while achieving higher order
accuracy in time, perhaps with a modified CFL restriction (measured here with a
CFL coefficient, c)

∆t ≤ c∆tFE .(2.6)

In [6] we gave numerical evidence to show that oscillations may occur when using
a linearly stable, high-order method which lacks the strong stability property, even if
the same spatial discretization is TVD when combined with the first-order forward
Euler time discretization. The example is illustrative, so we reproduce it here. We
consider a scalar conservation law, the familiar Burgers equation

ut +
(
1
2
u2
)
x

= 0(2.7)

with Riemann initial data

u(x, 0) =
{

1 if x ≤ 0,
−0.5 if x > 0.(2.8)

The spatial discretization is obtained by a second order MUSCL [12], which is TVD
for forward Euler time discretization under suitable CFL restriction.

In Figure 2.1, we show the result of using an SSP second-order Runge–Kutta
method for the time discretization (left) and that of using a non-SSP second-order
Runge–Kutta method (right). We can clearly see that the non-SSP result is oscillatory
(there is an overshoot).

92 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

This simple numerical example illustrates that it is safer to use an SSP time
discretization for solving hyperbolic problems. After all, they do not increase the
computational cost and have the extra assurance of provable stability.

As we have already mentioned above, the high-order SSP methods discussed here
are not restricted to preserving (not increasing) the TV. Our arguments below rely on
convexity, hence these properties hold for any norm. Consequently, SSP methods have
a wide range of applicability, as they can be used to ensure stability in an arbitrary
norm once the forward Euler time discretization is shown to be strongly stable,1 i.e.,
‖un + ∆tL(un)‖ ≤ ‖un‖. For linear examples we refer to [7], where weighted L2

SSP higher order discretizations of spectral schemes were discussed. For nonlinear
scalar conservation laws in several space dimensions, the TVD property is ruled out
for high-resolution schemes; instead, strong stability in the maximum norm is sought.
Applications of L∞ SSP higher order discretization for discontinuous Galerkin and
central schemes can be found in [3] and [9]. Finally, we note that since our arguments
below are based on convex decompositions of high-order methods in terms of the
first-order Euler method, any convex function will be preserved by such high-order
time discretizations. In this context we refer, for example, to the cell entropy stability
property of high-order schemes studied in [17] and [15].

We remark that the strong stability assumption for the forward Euler ‖un +
∆tL(un)‖ ≤ ‖un‖ can be relaxed to the more general stability assumption ‖un +
∆tL(un)‖ ≤ (1+O(∆t))‖un‖. This general stability property will also be preserved by
the high-order SSP time discretizations. The total variation bounded (TVB) methods
discussed in [18] and [2] belong to this category. However, if the forward Euler operator
is not stable, the framework in this paper cannot be used to determine whether a high-
order time discretization is stable or not.

2.2. SSP Runge–Kutta Methods. In [20], a generalm-stage Runge–Kutta method
for (2.1) is written in the form

u(0) = un,

u(i) =
i−1∑
k=0

(
αi,ku

(k) +∆tβi,kL(u(k))
)
, αi,k ≥ 0, i = 1, . . . ,m,(2.9)

un+1 = u(m).

Clearly, if all the βi,k’s are nonnegative, βi,k ≥ 0; then since by consistency∑i−1
k=0 αi,k = 1, it follows that the intermediate stages in (2.9), u(i), amount to con-

vex combinations of forward Euler operators, with ∆t replaced by βi,k
αi,k

∆t. We thus
conclude with the following lemma.

Lemma 2.1 (see [20]). If the forward Euler method (2.3) is strongly stable under
the CFL restriction (2.4), ‖un + ∆tL(un)‖ ≤ ‖un‖, then the Runge–Kutta method
(2.9) with βi,k ≥ 0 is SSP, ‖un+1‖ ≤ ‖un‖, provided the following CFL restriction
(2.6) is fulfilled:

∆t ≤ c∆tFE , c = min
i,k

αi,k
βi,k

.(2.10)

1By the notion of strong stability we refer to the fact that there is no temporal growth, as opposed
to the general notion of stability, which allows a bounded temporal growth, ‖un‖ ≤ Const · ‖u0‖,
with any arbitrary constant, possibly Const > 1.

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 93

If some of the βi,k’s are negative, we need to introduce an associated operator
L̃ corresponding to stepping backward in time. The requirement for L̃ is that it
approximate the same spatial derivative(s) as L, but that the strong stability property
hold with ‖un+1‖ ≤ ‖un‖ (with respect to either the TV or another relevant norm)
for the first-order Euler scheme solved backward in time, i.e.,

un+1 = un −∆tL̃(un).(2.11)

This can be achieved for hyperbolic conservation laws by solving the negative-in-time
version of (2.2),

ut = f(u)x.(2.12)

Numerically, the only difference is the change of upwind direction. Clearly, L̃ can be
computed with the same cost as that of computing L. We then have the following
lemma.

Lemma 2.2 (see [20]). If the forward Euler method combined with the spatial
discretization L in (2.3) is strongly stable under the CFL restriction (2.4), ‖un +
∆tL(un)‖ ≤ ‖un‖, and if Euler’s method solved backward in time in combination with
the spatial discretization L̃ in (2.11) is also strongly stable under the CFL restriction
(2.4), ‖un−∆tL̃(un)‖ ≤ ‖un‖, then the Runge–Kutta method (2.9) is SSP, ‖un+1‖ ≤
‖un‖, under the CFL restriction (2.6),

∆t ≤ c∆tFE , c = min
i,k

αi,k
|βi,k|

,(2.13)

provided βi,kL is replaced by βi,kL̃ whenever βi,k is negative.
Notice that if, for the same k, both L(u(k)) and L̃(u(k)) must be computed, the

cost as well as the storage requirement for this k is doubled. For this reason, we
would like to avoid negative βi,k as much as possible. However, as shown in [6] it is
not always possible to avoid negative βi,k.

2.3. SSP Multistep Methods. SSP multistep methods of the form

un+1 =
m∑
i=1

(
αiu

n+1−i +∆tβiL(un+1−i)
)
, αi ≥ 0,(2.14)

were studied in [19]. Since
∑
αi = 1, it follows that un+1 is given by a convex

combination of forward Euler solvers with suitably scaled ∆t’s, and hence, similar to
our discussion for Runge–Kutta methods, we arrive at the following lemma.

Lemma 2.3 (see [19]). If the forward Euler method combined with the spatial
discretization L in (2.3) is strongly stable under the CFL restriction (2.4), ‖un +
∆tL(un)‖ ≤ ‖un‖, and if Euler’s method solved backward in time in combination with
the spatial discretization L̃ in (2.11) is also strongly stable under the CFL restriction
(2.4), ‖un − ∆tL̃(un)‖ ≤ ‖un‖, then the multistep method (2.14) is SSP, ‖un+1‖ ≤
‖un‖, under the CFL restriction (2.6),

∆t ≤ c∆tFE , c = min
i

αi
|βi|

,(2.15)

provided βiL(·) is replaced by βiL̃(·) whenever βi is negative.

94 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

3. Linear SSP Runge–Kutta Methods of Arbitrary Order.

3.1. SSP Runge–Kutta Methods with Optimal CFL Condition. In this section
we present a class of optimal (in the sense of CFL number) SSP Runge–Kutta methods
of any order for the ODE (2.1), where L is linear. With a linear L being realized as a
finite-dimensional matrix, we denote L(u) = Lu. We will first show that the m-stage,
mth-order SSP Runge–Kutta method can have, at most, CFL coefficient c = 1 in
(2.10). We then proceed to construct optimal SSP linear Runge–Kutta methods.

Proposition 3.1. Consider the family of m-stage, mth-order SSP Runge–Kutta
methods (2.9) with nonnegative coefficients αi,k and βi,k. The maximum CFL restric-
tion attainable for such methods is the one dictated by the forward Euler scheme,

∆t ≤ ∆tFE ;

i.e., (2.6) holds with maximal CFL coefficient c = 1.
Proof. We consider the special case where L is linear and prove that even in this

special case the maximum CFL coefficient c attainable is 1. Any m-stage method
(2.9), for this linear case, can be rewritten as

u(i) =

(
1 +

i−1∑
k=0

Ai,k(∆tL)k+1

)
u(0), i = 1, . . . ,m,

where

A1,0 = β1,0, Ai,0 =
i−1∑
k=1

αi,kAk,0 +
i−1∑
k=0

βi,k,

Ai,k =
i−1∑

j=k+1

αi,jAj,k +
i−1∑
j=k

βi,jAj,k−1, k = 1, . . . , i− 1.

In particular, using induction, it is easy to show that the last two terms of the final
stage can be expanded as

Am,m−1 =
m∏
l=1

βl,l−1,

Am,m−2 =
m∑
k=2

βk,k−2

(
m∏

l=k+1

βl,l−1

)(
k−2∏
l=1

βl,l−1

)
+

m∑
k=1

αk,k−1


 m∏
l=1,l
=k

βl,l−1


 .

For an m-stage, mth-order linear Runge–Kutta scheme, Am,k = 1
(k+1)! . Using

Am,m−1 =
∏m
l=1 βl,l−1 = 1

m! , we can rewrite

Am,m−2 =
m∑
k=1

αk,k−1

m!βk,k−1
+

m∑
k=2

βk,k−2

(
m∏

l=k+1

βl,l−1

)(
k−2∏
l=1

βl,l−1

)
.

With the nonnegative assumption on βi,k’s and the fact Am,m−1 =
∏m
l=1 βl,l−1 = 1

m!
we have βl,l−1 > 0 for all l. For the CFL coefficient c ≥ 1 we must have αk,k−1

βk,k−1
≥ 1 for

all k. Clearly, Am,m−2 = 1
(m−1)! is possible under these restrictions only if βk,k−2 = 0

and αk,k−1
βk,k−1

= 1 for all k, in which case the CFL coefficient c ≤ 1.

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 95

We remark that the conclusion of Proposition 3.1 is valid only if the m-stage
Runge–Kutta method is mth-order accurate. In [19], we constructed an m-stage,
first-order SSP Runge–Kutta method with a CFL coefficient c = m which is suitable
for steady state calculations.

The proof above also suggests a construction for the optimal linear m-stage, mth-
order SSP Runge–Kutta methods.

Proposition 3.2. The class of m-stage schemes given (recursively) by

u(i) = u(i−1) +∆tLu(i−1), i = 1, . . . ,m− 1,(3.1)

u(m) =
m−2∑
k=0

αm,ku
(k) + αm,m−1

(
u(m−1) +∆tLu(m−1)

)
,

where α1,0 = 1 and

αm,k =
1
k
αm−1,k−1, k = 1, . . . ,m− 2,(3.2)

αm,m−1 =
1
m!
, αm,0 = 1−

m−1∑
k=1

αm,k

is an mth-order linear Runge–Kutta method which is SSP with CFL coefficient c = 1,

∆t ≤ ∆tFE .

Proof. The first-order case is forward Euler, which is first-order accurate and SSP
with CFL coefficient c = 1 by definition. The other schemes will be SSP with a CFL
coefficient c = 1 by construction, as long as the coefficients are nonnegative.

We now show that scheme (3.1)–(3.2) is mth-order accurate when L is linear. In
this case, clearly

u(i) = (1 +∆tL)i u(0) =

(
i∑

k=0

i!
k!(i− k)! (∆tL)

k

)
u(0), i = 1, . . . ,m− 1,

hence scheme (3.1)–(3.2) results in

u(m) =


m−2∑
j=0

αm,j

j∑
k=0

j!
k!(j − k)! (∆tL)

k + αm,m−1

m∑
k=0

m!
k!(m− k)! (∆tL)

k


u(0).

Clearly, by (3.2), the coefficient of (∆tL)m−1 is αm,m−1
m!

(m−1)! =
1

(m−1)! , the coefficient
of (∆tL)m is αm,m−1 = 1

m! , and the coefficient of (∆tL)0 is

1
m!

+
m−2∑
j=0

αm,j = 1.

It remains to show that, for 1 ≤ k ≤ m− 2, the coefficient of (∆tL)k is equal to 1
k! :

1
k!(m− k)! +

m−2∑
j=k

αm,j
j!

k!(j − k)! =
1
k!
.(3.3)

96 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

This will be shown by induction. Thus we assume (3.3) is true for m, and then for
m+ 1 we have, for 0 ≤ k ≤ m− 2, that the coefficient of (∆tL)k+1 is equal to

1
(k + 1)!(m− k)! +

m−1∑
j=k+1

αm+1,j
j!

(k + 1)!(j − k − 1)!

=
1

(k + 1)!

(
1

(m− k)! +
m−2∑
l=k

αm+1,l+1
(l + 1)!
(l − k)!

)

=
1

(k + 1)!

(
1

(m− k)! +
m−2∑
l=k

1
(l + 1)

αm,l
(l + 1)!
(l − k)!

)

=
1

(k + 1)!

(
1

(m− k)! +
m−2∑
l=k

αm,l
l!

(l − k)!

)

=
1

(k + 1)!
,

where in the second equality we used (3.2) and in the last equality we used the
induction hypothesis (3.3). This finishes the proof.

Finally, we show that all the α’s are nonnegative. Clearly α2,0 = α2,1 = 1
2 > 0.

If we assume αm,j ≥ 0 for all j = 0, . . . ,m− 1, then

αm+1,j =
1
j
αm,j−1 ≥ 0, j = 1, . . . ,m− 1; αm+1,m =

1
(m+ 1)!

≥ 0,

and, by noticing that αm+1,j ≤ αm,j−1 for all j = 1, . . . ,m, we have

αm+1,0 = 1−
m∑
j=1

αm+1,j ≥ 1−
m∑
j=1

αm,j−1 = 0.

As the m-stage, mth-order linear Runge–Kutta method is unique, we have in
effect proved that this unique m-stage, mth-order linear Runge–Kutta method is SSP
under CFL coefficient c = 1. If L is nonlinear, scheme (3.1)–(3.2) is still SSP under
CFL coefficient c = 1, but it is no longer mth-order accurate. Notice that all but the
last stage of these methods are simple forward Euler steps.

We note in passing the examples of the ubiquitous third- and fourth-order Runge–
Kutta methods, which admit the following convex, and hence SSP, decompositions:

3∑
k=0

1
k!
(∆tL)k =

1
3
+

1
2
(I +∆tL) +

1
6
(I +∆tL)3,(3.4)

4∑
k=0

1
k!
(∆tL)k =

3
8
+

1
3
(I +∆tL) +

1
4
(I +∆tL)2 +

1
24

(I +∆tL)4.(3.5)

We list, in Table 3.1, the coefficients αm,j of these optimal methods in (3.2) up to
m = 8.

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 97

Table 3.1 Coefficients αm,j of the SSP methods (3.1)–(3.2).

Order m αm,0 αm,1 αm,2 αm,3 αm,4 αm,5 αm,6 αm,7

1 1

2 1
2

1
2

3 1
3

1
2

1
6

4 3
8

1
3

1
4

1
24

5 11
30

3
8

1
6

1
12

1
120

6 53
144

11
30

3
16

1
18

1
48

1
720

7 103
280

53
144

11
60

3
48

1
72

1
240

1
5040

8 2119
5760

103
280

53
288

11
180

1
64

1
360

1
1440

1
40320

3.2. Application to Coercive Approximations. We now apply the optimal lin-
ear SSP Runge–Kutta methods to coercive approximations. We consider the linear
system of ODEs of the general form, with possibly variable, time-dependent coeffi-
cients,

d

dt
u(t) = L(t)u(t).(3.6)

As an example we refer to [7], where the far-from-normal character of the spec-
tral differentiation matrices defies the straightforward von Neumann stability analysis
when augmented with high-order time discretizations.

We begin our stability study for Runge–Kutta approximations of (3.6) with the
first-order forward Euler scheme (with 〈·, ·〉 denoting the usual Euclidean inner prod-
uct)

un+1 = un +∆tnL(tn)un,

based on variable time steps, tn :=
∑n−1
j=0 ∆tj . Taking L2 norms on both sides one

finds

|un+1|2 = |un|2 + 2∆tnRe〈L(tn)un, un〉+ (∆tn)2|L(tn)un|2,

and hence strong stability holds, |un+1| ≤ |un|, provided the following restriction on
the time step, ∆tn, is met:

∆tn ≤ −2Re〈L(tn)un, un〉/|L(tn)un|2.

Following Levy and Tadmor [13] we therefore make the following assumption.
Assumption 3.1 (coercivity). The operator L(t) is (uniformly) coercive in the

sense that there exists η(t) > 0 such that

η(t) := inf
|u|=1

−Re〈L(t)u, u〉|L(t)u|2 > 0.(3.7)

We conclude that for coercive L’s, the forward Euler scheme is strongly stable,
‖I +∆tnL(tn)‖ ≤ 1, if and only if

∆tn ≤ 2η(tn).

98 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

In a generic case, L(tn) represents a spatial operator with a coercivity bound η(tn),
which is proportional to some power of the smallest spatial scale. In this context the
above restriction on the time step amounts to the celebrated CFL stability condition.
Our aim is to show that the generalm-stage,mth-order accurate Runge–Kutta scheme
is strongly stable under the same CFL condition.

Remark. Observe that the coercivity constant, η, is an upper bound in the size
of L; indeed, by Cauchy–Schwartz, η(t) ≤ |L(t)u| · |u|/|L(t)u|2 and hence

‖L(t)‖ = sup
u

|L(t)u|
|u| ≤ 1

η(t)
.(3.8)

To make one point, we consider the fourth-order Runge–Kutta approximation of
(3.6):

k1 = L(tn)un,(3.9)

k2 = L(tn+ 1
2)
(
un +

∆tn
2
k1
)
,(3.10)

k3 = L(tn+ 1
2)
(
un +

∆tn
2
k2
)
,(3.11)

k4 = L(tn+1)(un +∆tnk3),(3.12)

un+1 = un +
∆tn
6

[
k1 + 2k2 + 2k3 + k4

]
.(3.13)

Starting with second-order and higher, the Runge–Kutta intermediate steps de-
pend on the time variation of L(·), and hence we require a minimal smoothness in
time, making the following assumption.

Assumption 3.2 (Lipschitz regularity). We assume that L(·) is Lipschitz. Thus,
there exists a constant K > 0 such that

‖L(t)− L(s)‖ ≤ K

η(t)
|t− s|.(3.14)

We are now ready to make our main result, stating the following proposition.
Proposition 3.3. Consider the coercive systems of ODEs (3.6)–(3.7), with Lips-

chitz continuous coefficients (3.14). Then the fourth-order Runge–Kutta scheme (3.9)–
(3.13) is stable under CFL condition

∆tn ≤ 2η(tn),(3.15)

and the following estimate holds:

|un| ≤ e3Ktn |u0|.(3.16)

Remark. The result along these lines was introduced by Levy and Tadmor [13,
Main Theorem], stating the strong stability of the constant coefficients s-order Runge–
Kutta scheme under CFL condition ∆tn ≤ Csη(tn). Here we improve in both simplic-
ity and generality. Thus, for example, the previous bound of C4 = 1/31 [13, Theorem
3.3] is now improved to a practical time-step restriction with our uniform Cs = 2.

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 99

Proof. We proceed in two steps. We first freeze the coefficients at t = tn, consid-
ering (here we abbreviate Ln = L(tn))

j1 = Lnun,(3.17)

j2 = Ln
(
un +

∆tn
2
j1
)
≡ Ln

(
I +

∆tn
2
Ln
)
un,(3.18)

j3 = Ln
(
un +

∆tn
2
j2
)
≡ Ln

[
I +

∆tn
2
Ln
(
I +

∆tn
2
Ln
)]
un,(3.19)

j4 = Ln(un +∆tnj3),(3.20)

vn+1 = un +
∆tn
6

[
j1 + 2j2 + 2j3 + j4

]
.(3.21)

Thus, vn+1 = P4(∆tnLn)un, where following (3.5),

P4(∆tnLn) :=
3
8
I +

1
3
(I +∆tL) +

1
4
(I +∆tL)2 +

1
24

(I +∆tL)4.

Since the CFL condition (3.15) implies the strong stability of forward Euler, i.e.,
‖I +∆tnLn‖ ≤ 1, it follows that ‖P4(∆tnLn)‖ ≤ 3/8 + 1/3 + 1/4 + 1/24 = 1. Thus,

|vn+1| ≤ |un|.(3.22)

Next, we include the time dependence. We need to measure the difference between
the exact and the “frozen” intermediate values—the k’s and the j’s. We have

k1 − j1 = 0,(3.23)

k2 − j2 =
[
L(tn+ 1

2)− L(tn)
](
I +

∆tn
2
Ln
)
un,(3.24)

k3 − j3 = L(tn+ 1
2)
∆tn
2

(k2 − j2) +
[
L(tn+ 1

2)− L(tn)
] ∆tn

2
j2,(3.25)

k4 − j4 = L(tn+1)∆tn(k3 − j3) + [L(tn+1)− L(tn)]∆tnj3.(3.26)

Lipschitz continuity (3.14) and the strong stability of forward Euler imply

|k2 − j2| ≤ K ·∆tn
2η(tn)

|un| ≤ K|un|.(3.27)

Also, since ‖Ln‖ ≤ 1
η(tn) , we find from (3.18) that |j2| ≤ |un|/η(tn), and hence (3.25)

followed by (3.27) and the CFL condition (3.15) imply

|k3 − j3| ≤ ∆tn
2η(tn)

|k2 − j2|+ K ·∆tn
2η(tn)

· ∆tn
2η(tn)

|un|(3.28)

≤ 2K
(

∆tn
2η(tn)

)2

|un| ≤ 2K|un|.

100 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

Finally, since by (3.19) j3 does not exceed |j3| < 1
η(tn) (1 +

∆tn
2η(tn))|un|, we find from

(3.26) followed by (3.28) and the CFL condition (3.15),

|k4 − j4| ≤ ∆tn
η(tn)

|k3 − j3|+ K ·∆tn
η(tn)

· ∆tn
η(tn)

(
1 +

∆tn
2η(tn)

)
|un|(3.29)

≤ K
((

∆tn
η(tn)

)3

+
(

∆tn
η(tn)

)2
)
|un| ≤ 12K|un|.

We conclude that un+1,

un+1 = vn+1 +
∆tn
6

[
2(k2 − j2) + 2(k3 − j3) + (k4 − j4)

]
,

is upper bounded by (consult (3.22), (3.27)–(3.29))

|un+1| ≤ |vn+1|+ ∆tn
6

[
2K|un|+ 4K|un|+ 12K|un|

]
≤ (1 + 3K∆tn)|un|

and the result (3.16) follows.

4. Nonlinear SSP Runge–Kutta Methods. In the previous section we derived
SSP Runge–Kutta methods for linear spatial discretizations. As explained in the
introduction, SSP methods are often required for nonlinear spatial discretizations.
Thus, most of the research to date has been in the derivation of SSP methods for
nonlinear spatial discretizations. In [20], schemes up to third order were found to
satisfy the conditions in Lemma 2.1 with CFL coefficient c = 1. In [6] it was shown
that all four-stage, fourth-order Runge–Kutta methods with positive CFL coefficient
c in (2.13) must have at least one negative βi,k, and a method which seems optimal
was found. For large-scale scientific computing in three space dimensions, storage is
usually a paramount consideration. We review the results presented in [6] about SSP
properties among such low-storage Runge–Kutta methods.

4.1. Nonlinear Methods of Second, Third, and Fourth Order. Here we review
the optimal (in the sense of CFL coefficient and the cost incurred by L̃ if it appears)
SSP Runge–Kutta methods of m-stage, mth-order for m = 2, 3, 4, written in the form
(2.9).

Proposition 4.1 (see [6]). If we require βi,k ≥ 0, then an optimal second-order
SSP Runge–Kutta method (2.9) is given by

u(1) = un +∆tL(un),(4.1)

un+1 =
1
2
un +

1
2
u(1) +

1
2
∆tL(u(1)),

with a CFL coefficient c = 1 in (2.10). An optimal third-order SSP Runge–Kutta
method (2.9) is given by

u(1) = un +∆tL(un),

u(2) =
3
4
un +

1
4
u(1) +

1
4
∆tL(u(1)),(4.2)

un+1 =
1
3
un +

2
3
u(2) +

2
3
∆tL(u(2)),

with a CFL coefficient c = 1 in (2.10).

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 101

In the fourth-order case we proved in [6] that we cannot avoid the appearance of
negative βi,k, as demonstrated in the following proposition.

Proposition 4.2 (see [6]). The four-stage, fourth-order SSP Runge–Kutta scheme
(2.9) with a nonzero CFL coefficient c in (2.13) must have at least one negative βi,k.

We thus must settle for finding an efficient fourth-order scheme containing L̃,
which maximizes the operation cost measured by c

4+i , where c is the CFL coefficient
(2.13) and i is the number of L̃’s. This way we are looking for an SSP method that
reaches a fixed time T with a minimal number of evaluations of L or L̃. The best
method we could find in [6] is

u(1) = un +
1
2
∆tL(un),

u(2) =
649
1600

u(0) − 10890423
25193600

∆tL̃(un) +
951
1600

u(1) +
5000
7873

∆tL(u(1)),

u(3) =
53989
2500000

un − 102261
5000000

∆tL̃(un) +
4806213
20000000

u(1)(4.3)

− 5121
20000

∆tL̃(u(1)) +
23619
32000

u(2) +
7873
10000

∆tL(u(2)),

un+1 =
1
5
un +

1
10

∆tL(un) +
6127
30000

u(1) +
1
6
∆tL(u(1))

+
7873
30000

u(2) +
1
3
u(3) +

1
6
∆tL(u(3)),

with a CFL coefficient c = 0.936 in (2.13). Notice that two L̃’s must be computed. The
effective CFL coefficient, compared with an ideal case without L̃’s, is 0.936× 4

6 = 0.624.
Since it is difficult to solve the global optimization problem, we do not claim that (4.3)
is an optimal four stage, fourth-order SSP Runge–Kutta method.

4.2. Low Storage Methods. Storage is usually an important consideration for
large scale scientific computing in three space dimensions. Therefore, low-storage
Runge–Kutta methods [23], [1], which only require two storage units per ODE vari-
able, may be desirable. Here we review the results presented in [6] concerning SSP
properties among such low-storage Runge–Kutta methods.

The general low-storage Runge–Kutta schemes can be written in the form [23], [1]

u(0) = un, du(0) = 0,

du(i) = Aidu(i−1) +∆tL(u(i−1)), i = 1, . . . ,m,

u(i) = u(i−1) +Bidu(i), i = 1, . . . ,m, B1 = c,(4.4)

un+1 = u(m).

Only u and du must be stored, resulting in two storage units for each variable.
Following Carpenter and Kennedy [1], the best SSP third-order method found by

numerical search in [6] is given by the system

z1 =
√
36c4 + 36c3 − 135c2 + 84c− 12, z2 = 2c2 + c− 2,

z3 = 12c4 − 18c3 + 18c2 − 11c+ 2, z4 = 36c4 − 36c3 + 13c2 − 8c+ 4,

z5 = 69c3 − 62c2 + 28c− 8, z6 = 34c4 − 46c3 + 34c2 − 13c+ 2,

102 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

B2 =
12c(c− 1)(3z2 − z1)− (3z2 − z1)2

144c(3c− 2)(c− 1)2
,

B3 =
−24(3c− 2)(c− 1)2

(3z2 − z1)2 − 12c(c− 1)(3z2 − z1)
,

A2 =
−z1(6c2− 4c+ 1) + 3z3

(2c+ 1)z1 − 3(c+ 2)(2c− 1)2
,

A3 =
−z1z4 + 108(2c− 1)c5 − 3(2c− 1)z5
24z1c(c− 1)4 + 72cz6 + 72c6(2c− 13)

,

with c = 0.924574, resulting in a CFL coefficient c = 0.32 in (2.6). This is of course
less optimal than (4.2) in terms of CFL coefficient, but the low-storage form is useful
for large-scale calculations. Carpenter and Kennedy [1] have also given classes of
five-stage, fourth-order low-storage Runge–Kutta methods. We have been unable to
find SSP methods in that class with positive αi,k and βi,k. A low-storage method
with negative βi,k cannot be made SSP, as L̃ cannot be used without destroying the
low-storage property.

4.3. Hybrid Multistep Runge–Kutta Methods. Hybrid multistep Runge–Kutta
methods (e.g., [10], [14]) are methods that combine the properties of Runge–Kutta
and multistep methods. We explore the two-step, two-stage method

un+ 1
2 = α21u

n + α20u
n−1 +∆t

(
β20L(un−1) + β21L(un)

)
, α2k ≥ 0,(4.5)

un+1 = α30u
n−1 + α31u

n+ 1
2 + α32u

n

+ ∆t
(
β30L(un−1) + β31L(un+ 1

2) + β32L(un)
)
, α3k ≥ 0.(4.6)

Clearly, this method is SSP under the CFL coefficient (2.10) if βi,k ≥ 0. We could also
consider the case allowing negative βi,k’s, using instead (2.13) for the CFL coefficient
and replacing βi,kL by βi,kL̃ for the negative βi,k’s.

For third-order accuracy, we have a three-parameter family (depending on c, α30,
and α31):

α20 = 3c2 + 2c3,

β20 = c2 + c3,

α21 = 1− 3c2 − 2c3,

β21 = c+ 2c2 + c3,

β30 =
2 + 2α30 − 3c+ 3α30c+ α31c

3

6(1 + c)
,(4.7)

β31 =
5− α30 − 3α31c

2 − 2α31c
3

6c+ 6c2
,

α32 = 1− α31 − α30,

β32 =
−5 + α30 + 9c+ 3α30c− 3α31c

2 − α31c
3

6c
.

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 103

The best method we were able to find is given by c = 0.4043, α30 = 0.0605, and
α31 = 0.6315 and has a CFL coefficient c ≈ 0.473. Clearly, this is not as good as
the optimal third-order Runge–Kutta method (4.2) with CFL coefficient c = 1. We
hoped that a fourth-order scheme with a large CFL coefficient could be found, but
unfortunately this is not the case, as is proven in the following proposition.

Proposition 4.3. There are no fourth-order schemes (4.5) with all nonnegative
αi,k.

Proof. The fourth-order schemes are given by a two-parameter family depending
on c, α30 and setting α31 in (4.7) to be

α31 =
−7− α30 + 10c− 2α30c

c2(3 + 8c+ 4c2)
.

The requirement α21 ≥ 0 enforces (see (4.7)) c ≤ 1
2 . The further requirement

α20 ≥ 0 yields − 3
2 ≤ c ≤ 1

2 . α31 has a positive denominator and a negative numerator
for − 1

2 < c <
1
2 , and its denominator is 0 when c = − 1

2 or c = − 3
2 , thus we require

− 3
2 ≤ c < − 1

2 . In this range, the denominator of α31 is negative, hence we also require
its numerator to be negative, which translates to α30 ≤ −7+10c

1+2c . Finally, we would

require α32 = 1− α31 − α30 ≥ 0, which translates to α30 ≥ c2(2c+1)(2c+3)+7−10c
(2c+1)(2c−1)(c+1)2 . The

two restrictions on α30 give us the following inequality:

−7 + 10c
1 + 2c

≥ c
2(2c+ 1)(2c+ 3) + 7− 10c
(2c+ 1)(2c− 1)(c+ 1)2

,

which, in the range of − 3
2 ≤ c < − 1

2 , yields c ≥ 1—a contradiction.

5. Linear and Nonlinear Multistep Methods. In this section we review and
further study SSP explicit multistep methods (2.14), which were first developed in
[19]. These methods are rth-order accurate if

m∑
i=1

αi = 1,(5.1)

m∑
i=1

ikαi = k

(
m∑
i=1

ik−1βi

)
, k = 1, . . . , r.

We first prove a proposition that sets the minimum number of steps in our search
for SSP multistep methods.

Proposition 5.1. For m ≥ 2, there is no m-step, mth-order SSP method with
all nonnegative βi, and there is no m-step SSP method of order (m+ 1).

Proof. By the accuracy condition (5.1), we clearly have for an rth-order accurate
method

m∑
i=1

p(i)αi =
m∑
i=1

p′(i)βi(5.2)

for any polynomial p(x) of degree at most r satisfying p(0) = 0.
When r = m, we could choose

p(x) = x(m− x)m−1.

104 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

Clearly p(i) ≥ 0 for i = 1, . . . ,m, and equality holds only for i = m. On the other
hand, p′(i) = m(1 − i)(m − i)m−2 ≤ 0, and equality holds only for i = 1 and i = m.
Hence (5.2) would have a negative right side and a positive left side and would not be
an inequality if all αi and βi are nonnegative, unless the only nonzero entries are αm,
β1, and βm. In this special case we have αm = 1 and β1 = 0 to get a positive CFL
coefficient c in (2.15). The first two-order conditions in (5.1) now lead to βm = m
and 2βm = m, which cannot be simultaneously satisfied.

When r = m+ 1, we could choose

p(x) =
∫ x

0
q(t)dt, q(t) =

m∏
i=1

(i− t).(5.3)

Clearly p′(i) = q(i) = 0 for i = 1, . . . ,m. We also claim (and prove below) that all the
p(i)’s, i = 1, . . . ,m, are positive. With this choice of p in (5.2), its right-hand side
vanishes, while the left-hand side is strictly positive if all αi ≥ 0—a contradiction.

We conclude with the proof of the following claim.
Claim. p(i) =

∫ i
0 q(t)dt > 0, q(t) :=

∏m
i=1(i− t).

Indeed, q(t) oscillates between being positive on the even intervals I0 = (0, 1), I2 =
(2, 3), . . . , and being negative on the odd intervals, I1 = (1, 2), I3 = (3, 4), The
positivity of the p(i)’s for i ≤ (m + 1)/2 follows since the integral of q(t) over each
pair of consecutive intervals is positive, at least for the first [(m+ 1)/2] intervals,

p(2k + 2)− p(2k) =
∫
I2k

|q(t)|dt−
∫
I2k+1

|q(t)|dt

=
∫
I2k

−
∫
I2k+1

|(1− t)(2− t) · · · (m− t)|dt

=
∫
I2k

|(1− t)(2− t) · · · (m− 1− t)| × (|(m− t)| − |t|)dt > 0,

2k + 1 ≤ (m+ 1)/2.

For the remaining intervals we note the symmetry of q(t) with respect to the midpoint
(m+1)/2, i.e., q(t) = (−1)mq(m+1− t), which enables us to write for i > (m+1)/2

p(i) =
∫ (m+1)/2

0
q(t)dt+ (−1)m

∫ i

(m+1)/2
q(m+ 1− t)dt

=
∫ (m+1)/2

0
q(t)dt+ (−1)m

∫ (m+1)/2

m+1−i
q(t′)dt′.(5.4)

Thus, if m is odd, then p(i) = p(m+ 1− i) > 0 for i > (m+ 1)/2. If m is even, then
the second integral on the right of (5.4) is positive for odd i’s, since it starts with a
positive integrand on the even interval Im+1−i. And finally, if m is even and i is odd,
then the second integral starts with a negative contribution from its first integrand
on the odd interval Im+1−i, while the remaining terms that follow cancel in pairs as
before. A straightforward computation shows that this first negative contribution is
compensated for by the positive gain from the first pair, i.e.,

p(m+ 2− i) >
∫ 2

0
q(t)dt+

∫ m+2−i

m+1−i
q(t)dt > 0, m even, i odd.

This concludes the proof of our claim.

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 105

Table 5.1 SSP multistep methods (2.14).

Steps Order CFL αi βi
m r c

1 2 2 1
2

4
5 ,

1
5

8
5 ,− 2

5

2 3 2 1
2

3
4 , 0,

1
4

3
2 , 0, 0

3 4 2 2
3

8
9 , 0, 0,

1
9

4
3 , 0, 0, 0

4 3 3 0.274 4
7 ,

2
7 ,

1
7

25
12 ,− 20

21 ,
37
84

5 3 3 0.287 2973
5000 ,

351
1250 ,

623
5000

1297
625 ,− 49

50 ,
1087
2500

6 4 3 1
3

16
27 , 0, 0,

11
27

16
9 , 0, 0,

4
9

7 5 3 1
2

25
32 , 0, 0, 0,

7
32

25
16 , 0, 0, 0,

5
16

8 6 3 0.567 108
125 , 0, 0, 0, 0,

17
125

36
25 , 0, 0, 0, 0,

6
25

9 4 4 0.154 29
72 ,

7
24 ,

1
4 ,

1
18

481
192 ,− 1055

576 ,
937
576 ,− 197

576

10 4 4 0.159 1989
5000 ,

2893
10000 ,

517
2000 ,

34
625

601613
240000 ,− 1167

640 ,
130301
80000 ,− 82211

240000

11 6 4 0.245 747
1280 , 0, 0, 0,

81
256 ,

1
10

237
128 , 0, 0, 0,

165
128 ,− 3

8

12 5 4 0.021 1557
32000 ,

1
32000 ,

1
120 ,

2063
48000 ,

9
10

5323561
2304000 ,

2659
2304000 ,

904987
2304000 ,

1567579
768000 , 0

13 5 5 0.077 1
4 ,

1
4 ,

7
24 ,

1
6 ,

1
24

185
64 ,− 851

288 ,
91
24 ,− 151

96 ,
199
576

14 5 5 0.085 1
4 ,

13
50 ,

8
25 ,

7
50 ,

3
100

52031
18000 ,− 26617

9000 ,
1412
375 ,− 14407

9000 ,
6161
18000

15 6 5 0.130 7
20 ,

3
10 ,

4
15 , 0,

7
120 ,

1
40

291201
108000 ,− 198401

86400 ,
88063
43200 , 0,− 17969

43200 ,
73061
432000

We remark that [4] contains a result stating that there are no linearly stable m-
step, (m + 1)st-order methods when m is odd. When m is even such linearly stable
methods exist but would require negative αi. This is consistent with our result.

In the remainder of this section we will discuss optimal m-step, mth-order SSP
methods (which must have negative βi according to Proposition 5.1) and m-step,
(m− 1)st-order SSP methods with positive βi.

For two-step, second-order SSP methods, a scheme was given in [19] with a CFL
coefficient c = 1

2 (scheme 1 in Table 5.1). We prove this is optimal in terms of CFL
coefficients.

Proposition 5.2. For two-step, second-order SSP methods, the optimal CFL
coefficient c in (2.15) is 1

2 .
Proof. The accuracy condition (5.1) can be explicitly solved to obtain a one-

parameter family of solutions

α2 = 1− α1, β1 = 2− 1
2
α1, β2 = −1

2
α1.

The CFL coefficient c is a function of α1 and it can be easily verified that the maximum
is c = 1

2 achieved at α1 = 4
5 .

We move on to three-step, second-order methods. It is now possible to have
SSP schemes with positive αi and βi. One such method is given in [19] with a
CFL coefficient c = 1

2 (scheme 2 in Table 5.1). We prove this is optimal in the
CFL coefficient in the following proposition. We remark that this multistep method
has the same efficiency as the optimal two-stage, second-order Runge–Kutta method
(4.1). This is because there is only one L evaluation per time step here, compared
with two L evaluations in the two-stage Runge–Kutta method. Of course, the storage
requirement here is larger.

106 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

Proposition 5.3. If we require βi ≥ 0, then the optimal three-step, second-order
method has a CFL coefficient c = 1

2 .
Proof. The coefficients of the three-step, second-order method are given by

α1 =
1
2
(6− 3β1 − β2 + β3) , α2 = −3 + 2β1 − 2β3, α3 =

1
2
(2− β1 + β2 + 3β3) .

For CFL coefficient c > 1
2 , we need

αk
βk
> 1

2 for all k. This implies

2α1 > β1 ⇒ 6− 4β1 − β2 + β3 > 0,

2α2 > β2 ⇒ −6 + 4β1 − β2 − 4β3 > 0.

This means that

β2 − β3 < 6− 4β1 < −β2 − 4β3 ⇒ 2β2 < −3β3.

Thus, we would have a negative β.
We remark that if more steps are allowed, then the CFL coefficient can be im-

proved. Scheme 3 in Table 5.1 is a four-step, second-order method with positive αi
and βi and a CFL coefficient c = 2

3 .
We now move to three-step, third-order methods. In [19] we gave a three-step,

third-order method with a CFL coefficient c ≈ 0.274 (scheme 4 in Table 5.1). A
computer search gives a slightly better scheme (scheme 5 in Table 5.1) with a CFL
coefficient c ≈ 0.287.

Next we move on to four-step, third-order methods. It is now possible to have
SSP schemes with positive αi and βi. One example was given in [19] with a CFL
coefficient c = 1

3 (scheme 6 in Table 5.1). We prove this is optimal in the CFL
coefficient in the following proposition. We remark again that this multistep method
has the same efficiency as the optimal three-stage, third-order Runge–Kutta method
(4.2). This is because there is only one L evaluation per time step here, compared
with three L evaluations in the three-stage Runge–Kutta method. Of course, the
storage requirement here is larger.

Proposition 5.4. If we require βi ≥ 0, then the optimal four-step, third-order
method has a CFL coefficient c = 1

3 .
Proof. The coefficients of the four-step, third-order method are given by

α1 =
1
6
(24− 11β1 − 2β2 + β3 − 2β4) , α2 = −6 + 3β1 −

1
2
β2 − β3 +

3
2
β4,

α3 = 4− 3
2
β1 + β2 +

1
2
β3 − 3β4, α4 =

1
6
(−6 + 2β1 − β2 + 2β3 + 11β4) .

For a CFL coefficient c > 1
3 we need αk

βk
> 1

3 for all k. This implies

24− 13β1 − 2β2 + β3 − 2β4 > 0, −36 + 18β1 − 5β2 − 6β3 + 9β4 > 0,

24− 9β1 + 6β2 + β3 − 18β4 > 0, −6 + 2β1 − β2 + 2β3 + 9β4 > 0.

Combining these (9 times the first inequality plus 8 times the second plus 3 times the
third) we get

−40β2 − 36β3 > 0,

which implies a negative β.

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 107

We again remark that if more steps are allowed, the CFL coefficient can be im-
proved. Scheme 7 in Table 5.1 is a five-step, third-order method with positive αi
and βi and a CFL coefficient c = 1

2 . Scheme 8 in Table 5.1 is a six-step, third-order
method with positive αi and βi and a CFL coefficient c = 0.567.

We now move on to four-step, fourth-order methods. In [19] we gave a four-
step, fourth-order method (scheme 9 in Table 5.1) with a CFL coefficient c ≈ 0.154.
A computer search gives a slightly better scheme with a CFL coefficient c ≈ 0.159,
scheme 10 in Table 5.1. If we allow two more steps, we can improve the CFL coefficient
to c = 0.245 (scheme 11 in Table 5.1).

Next we move on to five-step, fourth-order methods. It is now possible to have
SSP schemes with positive αi and βi. The solution can be written as the following
five-parameter family:

α5 = 1− α1 − α2 − α3 − α4, β1 =
1
24

(55 + 9α2 + 8α3 + 9α4 + 24β5) ,

β2 =
1
24

(5− 64α1 − 45α2 − 32α3 − 37α4 − 96β5) ,

β3 =
1
24

(5 + 32α1 + 27α2 + 40α3 + 59α4 + 144β5) ,

β4 =
1
24

(55− 64α1 − 63α2 − 64α3 − 55α4 − 96β5) .

We can clearly see that to get β2 ≥ 0 we would need α1 ≤ 5
64 , and also β1 ≥ 55

24 , hence
the CFL coefficient cannot exceed c ≤ α1

β1
≤ 3

88 ≈ 0.034. A computer search gives a
scheme (scheme 12 in Table 5.1) with a CFL coefficient c = 0.021. The significance
of this scheme is that it disproves the belief that SSP schemes of order four or higher
must have negative β and hence must use L̃ (see Proposition 4.2 for Runge–Kutta
methods). However, the CFL coefficient here is probably too small for the scheme to
be of much practical use.

We finally look at five-step, fifth-order methods. In [19] a scheme with CFL
coefficient c = 0.077 is given (scheme 13 in Table 5.1). A computer search gives us
a scheme with a slightly better CFL coefficient c ≈ 0.085, scheme 14 in Table 5.1.
Finally, by increasing one more step, one could get [19], a scheme with CFL coefficient
c = 0.130, scheme 15 in Table 5.1.

We list in Table 5.1 the multistep methods studied in this section.

6. Implicit SSP Methods.

6.1. Implicit TVD Stable Scheme. Implicit methods are useful in that they typ-
ically eliminate the step-size restriction (CFL) associated with stability analysis. For
many applications, the backward Euler method possesses strong stability properties
that we would like to preserve in higher order methods. For example, it is easy to
show a version of Harten’s lemma [8] for the TVD property of implicit backward Euler
methods.

Lemma 6.1 (Harten). The following implicit backward Euler method

un+1
j = unj +∆t

[
Cj+ 1

2

(
un+1
j+1 − un+1

j

)−Dj− 1
2

(
un+1
j − un+1

j−1

)]
,(6.1)

where Cj+ 1
2
and Dj− 1

2
are functions of un and/or un+1 at various (usually neighbor-

ing) grid points satisfying

Cj+ 1
2
≥ 0, Dj− 1

2
≥ 0,(6.2)

is TVD in the sense of (2.5) for arbitrary ∆t.

108 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

Proof. Taking a spatial forward difference in (6.1) and moving terms, one gets[
1 + ∆t

(
Cj+ 1

2
+Dj+ 1

2

)] (
un+1
j+1 − un+1

j

)
= unj+1 − unj +∆tCj+ 3

2

(
un+1
j+2 − un+1

j+1

)
+∆tDj− 1

2

(
un+1
j − un+1

j−1

)
.

Using the positivity of C and D in (6.2) one gets[
1 + ∆t

(
Cj+ 1

2
+Dj+ 1

2

)] ∣∣un+1
j+1 − un+1

j

∣∣
≤
∣∣unj+1 − unj

∣∣+∆tCj+ 3
2

∣∣un+1
j+2 − un+1

j+1

∣∣+∆tDj− 1
2

∣∣un+1
j − un+1

j−1

∣∣ ,
which, upon summing over j, would yield the TVD property (2.5).

Another example is the cell entropy inequality for the square entropy, satisfied
by the discontinuous Galerkin method of arbitrary order of accuracy in any space
dimensions, when the time discretization is by a class of implicit time discretization
including backward Euler and Crank–Nicholson, again without any restriction on the
time step ∆t [11].

As in section 2 for explicit methods, here we would like to discuss the possibility
of designing higher order implicit methods that share the strong stability properties
of backward Euler, without any restriction on the time step ∆t.

Unfortunately, we are not as lucky in the implicit case. Let us look at a simple
example of second-order implicit Runge–Kutta methods:

u(1) = un + β1∆tL(u(1)),(6.3)

un+1 = α2,0u
n + α2,1u

(1) + β2∆tL(un+1).

Notice that we have only a single implicit L term for each stage and no explicit L
terms, in order to avoid time-step restrictions necessitated by the strong stability
of explicit schemes. However, since the explicit L(u(1)) term is contained indirectly
in the second stage through the u(1) term, we do not lose generality in writing the
schemes as the form in (6.3) except for the absence of the L(un) terms in both stages.

To simplify our example we assume L is linear. Second-order accuracy requires
the coefficients in (6.3) to satisfy

α2,1 =
1

2β1(1− β1)
, α2,0 = 1− α2,1, β2 =

1− 2β1

2(1− β1)
.(6.4)

To obtain an SSP scheme from (6.4) we would require α2,0 and α2,1 to be nonnegative.
We can clearly see that this is impossible, as α2,1 is in the range [4,+∞) or (−∞, 0).

We will use the following simple numerical example to demonstrate that a non-
SSP implicit method may destroy the nonoscillatory property of the backward Euler
method, despite the same underlying nonoscillatory spatial discretization. We solve
the simple linear wave equation

ut = ux(6.5)

with a step-function initial condition:

u(x, 0) =
{

1 if x ≤ 0,
0 if x > 0,

(6.6)

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 109

-7 -6 -5 -4 -3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x

u
1st order
exact

-7 -6 -5 -4 -3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x

u
2nd order
exact

Fig. 6.1 First-order upwind spatial discretization. Solution after 100 time steps at CFL number
∆t
∆x = 1.4. Left: First-order backward Euler time discretization; right: non-SSP second-
order implicit Runge–Kutta time discretization (6.3)–(6.4) with β1 = 2.

and ux in (6.5) is approximated by the simple first-order upwind difference:

L(u)j =
1
∆x

(uj+1 − uj) .

The backward Euler time discretization

un+1 = un +∆tL(un+1)

for this problem is unconditionally TVD according to Lemma 6.1. We can see on
the left of Figure 6.1 that the solution is monotone. However, if we use (6.3)–(6.4)
with β1 = 2 (which results in positive β2 = 3

2 , α2,0 = 5
4 , but a negative α2,1 = − 1

4)
as the time discretization, we can see on the right of Figure 6.1 that the solution is
oscillatory.

In the next two subsections we discuss the rather disappointing negative results
about the nonexistence of high-order SSP Runge–Kutta or multistep methods.

6.2. Implicit Runge–Kutta Methods. A general implicit Runge–Kutta method
for (2.1) can be written in the form

u(0) = un,

u(i) =
i−1∑
k=0

αi,ku
(k) +∆tβiL(u(i)), αi,k ≥ 0, i = 1, . . . ,m,(6.7)

un+1 = u(m).

Notice that we have only a single implicit L term for each stage and no explicit L
terms. This is to avoid time-step restrictions for strong stability properties of explicit
schemes. However, since explicit L terms are contained indirectly beginning at the
second stage from u of the previous stages, we do not lose generality in writing the
schemes as the form in (6.7) except for the absence of the L(u(0)) terms in all stages.

110 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

If these L(u(0)) terms are included, we would be able to obtain SSP Runge–Kutta
methods under restrictions on ∆t similar to explicit methods.

Clearly, if we assume that the first-order implicit Euler discretization

un+1 = un +∆tL(un+1)(6.8)

is unconditionally strongly stable, ‖un+1‖ ≤ ‖un‖, then (6.7) would be uncondition-
ally strongly stable under the same norm provided βi > 0 for all i. If βi becomes
negative, (6.7) would still be unconditionally strongly stable under the same norm
if βiL is replaced by βiL̃ whenever the coefficient βi < 0, with L̃ approximates the
same spatial derivative(s) as L, but is unconditionally strongly stable for first-order
implicit Euler, backward in time:

un+1 = un −∆tL̃(un+1).(6.9)

As before, this can again be achieved for hyperbolic conservation laws by solving
(2.12), the negative-in-time version of (2.2). Numerically, the only difference is the
change of upwind direction.

Unfortunately, we have the following negative result which completely rules out
the existence of SSP implicit Runge–Kutta schemes (6.7) of order higher than 1.

Proposition 6.2. If (6.7) is at least second-order accurate, then αi,k cannot be
all nonnegative.

Proof. We prove that the statement holds even if L is linear. In this case second-
order accuracy implies

i−1∑
k=0

αi,k = 1, Xm = 1, Ym =
1
2
,(6.10)

where Xm and Ym can be recursively defined as

X1 = β1, Y1 = β2
1 , Xm = βm +

m−1∑
i=1

αm,iXi, Ym = βmXm +
m−1∑
i=1

αm,iYi.

(6.11)

We now show that, if αi,k ≥ 0 for all i and k, then

Xm − Ym <
1
2
,(6.12)

which is clearly a contradiction to (6.10). In fact, we use induction on m to prove

(1− a)Xm − Ym ≤ cm(1− a)2 for any real number a,(6.13)

where

c1 =
1
4
, ci+1 =

1
4(1− ci)

.(6.14)

It is easy to show that (6.14) implies

1
4
= c1 < c2 < · · · < cm <

1
2
.(6.15)

STRONG STABILITY-PRESERVING TIME DISCRETIZATION METHODS 111

We start with the case m = 1. Clearly,

(1− a)X1 − Y1 = (1− a)β1 − β2
1 ≤

1
4
(1− a)2 = c1(1− a)2

for any a. Now assume that (6.13)–(6.14), and hence also (6.15), is valid for allm < k,
and that for m = k we have

(1− a)Xk − Yk = (1− a− βk)βk +
k−1∑
i=1

αk,i [(1− a− βk)Xi − Yi]

≤ (1− a− βk)βk + ck−1(1− a− βk)2

≤ 1
4(1− ck−1)

(1− a)2

= ck(1− a)2,

where in the first equality we used (6.11), in the second inequality we used (6.10)
and the induction hypotheses (6.13) and (6.15), and the third inequality is a simple
maximum of a quadratic function in βk. This finishes the proof.

We remark that the proof of Proposition 6.2 can be simplified, using existing
ODE results in [5], if all βi’s are nonnegative or all βi’s are nonpositive. However, the
case containing both positive and negative βi’s cannot be handled by existing ODE
results, as L and L̃ do not belong to the same ODE.

6.3. Implicit Multistep Methods. For our purpose, a general implicit multistep
method for (2.1) can be written in the form

un+1 =
m∑
i=1

αiu
n+1−i +∆tβ0L(un+1), αi ≥ 0.(6.16)

Notice that we have only a single implicit L term and no explicit L terms. This is to
avoid time-step restrictions for norm properties of explicit schemes. If explicit L terms
are included, we would be able to obtain SSP multistep methods under restrictions
on ∆t similar to explicit methods.

Clearly, if we assume that the first-order implicit Euler discretization (6.8) is
unconditionally strongly stable under a certain norm, then (6.16) would be uncondi-
tionally strongly stable under the same norm provided that β0 > 0. If β0 is negative,
(6.16) would still be unconditionally strongly stable under the same norm if L were
replaced by L̃.

Unfortunately, we have the following negative result which completely rules out
the existence of SSP implicit multistep schemes (6.16) of order higher than 1.

Proposition 6.3. If (6.16) is at least second-order accurate, then αi cannot be
all nonnegative.

Proof. Second order accuracy implies

m∑
i=1

αi = 1,
m∑
i=1

iαi = β0,

m∑
i=1

i2αi = 0.(6.17)

The last equality in (6.17) implies that αi cannot be all nonnegative.

112 SIGAL GOTTLIEB, CHI-WANG SHU, AND EITAN TADMOR

7. Concluding Remarks. We have systematically studied SSP time discretiza-
tion methods, which preserve stability, in any norm, of the forward Euler (for explicit
methods) or the backward Euler (for implicit methods) first-order time discretizations.
Runge–Kutta and multistep methods are both investigated. The methods listed here
can be used for method of lines numerical schemes for PDEs, especially for hyperbolic
problems.

REFERENCES

[1] M. Carpenter and C. Kennedy, Fourth-Order 2N-Storage Runge-Kutta Schemes, NASA TM
109112, NASA Langley Research Center, June 1994.

[2] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws II: General framework, Math. Comp., 52 (1989), pp.
411–435.

[3] B. Cockburn, S. Hou, and C.-W. Shu, TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: The multidimensional case,
Math. Comp., 54 (1990), pp. 545–581.

[4] G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3 (1963), pp.
27–43.

[5] K. Dekker and and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear
differential equations, Elsevier Science Publishers, Amsterdam, 1984.

[6] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp.,
67 (1998), pp. 73–85.

[7] D. Gottlieb and E. Tadmor, The CFL condition for spectral approximations to hyperbolic
initial-boundary value problems, Math. Comp., 56 (1991), pp. 565–588.

[8] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49
(1983), pp. 357–393.

[9] A. Kurganov and E. Tadmor, New High-Resolution Schemes for Nonlinear Conservation
Laws and Related Convection-Diffusion Equations, UCLA CAM Report No. 99-16, Uni-
versity of California, Los Angeles.

[10] Z. Jackiewicz, R. Renaut, and A. Feldstein, Two-step Runge-Kutta methods, SIAM J.
Numer. Anal, 28 (1991), pp. 1165–1182.

[11] G. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods,
Math. Comp., 62 (1994), pp. 531–538.

[12] B. van Leer, Towards the ultimate conservative difference scheme V. A second order sequel
to Godunov’s method, J. Comput. Phys., 32 (1979), pp. 101–136.

[13] D. Levy and E. Tadmor, From semidiscrete to fully discrete: Stability of Runge–Kutta
schemes by the energy method, SIAM Rev., 40 (1998), pp. 40–73.

[14] M. Nakashima, Embedded pseudo-Runge–Kutta methods, SIAM J. Numer. Anal, 28 (1991),
pp. 1790–1802.

[15] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation
laws, J. Comput. Phys., 87 (1990), pp. 408–463.

[16] S. Osher and S. Chakravarthy, High resolution schemes and the entropy condition, SIAM
J. Numer. Anal., 21 (1984), pp. 955–984.

[17] S. Osher and E. Tadmor, On the convergence of difference approximations to scalar conser-
vation laws, Math. Comp., 50 (1988), pp. 19–51.

[18] C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Math. Comp., 49 (1987),
pp. 105–121.

[19] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9
(1988), pp. 1073–1084.

[20] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[21] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,
SIAM J. Numer. Anal., 21 (1984), pp. 995–1011.

[22] E. Tadmor, Approximate solutions of nonlinear conservation laws, in Advanced Numerical
Approximation of Nonlinear Hyperbolic Equations, Lectures Notes from CIME Course,
Cetraro, Italy, 1997, A. Quarteroni, ed., Lecture Notes in Math. 1697, Springer-Verlag,
New York, 1998, pp. 1–150.

[23] J. H. Williamson, Low-storage Runge-Kutta schemes, J. Comput. Phys., 35 (1980), pp. 48–56.

	SSPlinear.pdf
	1. INTRODUCTION
	2. LINEAR CONSTANT COEFFICIENT SSP RUNGE-KUTTA METHODS OF ARBITRARY ORDER
	3. LINEAR CONSTANT COEFFICIENT OPERATORS WITH TIME DEPENDENT FORCING TERMS
	4. NUMERICAL RESULTS
	5. CONCLUDING REMARKS
	

