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Abstract

High order simulations are necessary in order to capture fine details in resolving supersonic reactive flows. However, high
Mach number compressible flows feature sharp gradients acdrtinuities, which present a challenge to successful simula-
tions using high order methods. Spectral methods have proven a powerful tool in simulation of incompressible turbulent flows,
and recent advances allow the application of spectral methods to compressible reactive flows. We review the recent advances in
the theory and application of spectral methods which allow stable computations of discontinuous phenomena, and the recovery
of high order information via postprocessing, andsgrg applications of high Mach number reactive floWwscite thisarticle:
D. Gottlieb, S. Gottlieb, C. R. Mecanique 333 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

High order methods are the choice methods in numerical computations requiring fine scale resolution and long
time integrations. In particular, sptral methods have cortitited to our understanding of turbulence by success-
fully simulating incompressible turbulent flows. Several issues arise when applying spectral methods to high Mach
number compressible flows, which feature sharp gradients and discontinuities. In the presence of such phenom-
ena the accuracy of high order methodtederates. This is due to the ié&hown Gibbs phenomenon that states
that the pointwise convergence of global approximatimindiscontinuous functions is at most first order. In this
case the approximations are oscillatory and converge nforarly, seemingly rendenig global methods, such as
spectral methods, useless for simulating compressible flows.
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Recent advances in the theory and laggtion of spectral mdiods indicate that high order information is re-
tained in stable spectral simulations of discontinuous phenomena and can be recovered by suitable postprocessing
techniques. The goal of this paper is to review the state of the art in applying spectral methods to the numerical
solution of discontinuous problems.

In Section 2 we briefly review the issues involved in global approximations of nonsmooth functions. We present
sufficient conditions under which high order information may be extracted by postprocessing, and discuss some
recently developed postprocessors. The question ishehspectral approximatioms discontinuous solutions of
partial differential equations retain high order actermformation. We review the theory for linear hyperbolic
equations in Section 3 and explain wagd how high order accuracy infortian is retained in high order sim-
ulations of linear discomiuous problems. In Section 4 we discuss tlabiization of spectral methods applied
to nonlinear hyperbolic equations and in Section 5 we prestficient ways of stabilizing these schemes using
adaptive filters. In Section 6 we bring numerical evidethat design accuracy can be achieved even for nonlin-
ear systems of equations after postprocessing. Several examples of successful applications of spectral methods to
complicated interactions of shock waves and complex flows are presented in Section 7. Many more contributions
have been made in [1-19].

2. Approximation theory

The partial Fourier sum

N
Z f;c eﬂikx
k=—N

based on the first/2 + 1 Fourier coefficients of a nonsmooth functigix), converges slowly away from the dis-
continuity and features notlecaying oscillations. This behavior dbyal approximationsf nonsmooth functions

is known as the classical Gibbs phenomenon. (See [20].) The same behavior is observed for all global approxima-
tions such as orthogonal polynomials, Bessel functions, etc.

In this section we present sufficient conditions foe removal of the Gibbs phenomenon and show that these
conditions are satisfied for all commonly used spectral approximations (Fourier, Chebyshev and Legendre). The
main result can be summarized as follows: the slow convergence of the expansion of a discontinuous function
in any basis can be completely overcome, in any interval of smoothness, provided that this basis has a Gibbs
complementary basis (to be defined later).

Consider a functiory (x) € L2[—1, 1] and assume that there is a subintefuab] c [—1, 1] in which f(x) is
analytic. Let the family{¥ (x)}, be orthonormal under a scalar prodgct), and denote the finite expansion of
f(x) in this basis byfy (x),

N
v =) (f W)W (x)

k=0
The standard assumption is
Jim [£0) = fv(0)]=0

almost everywhere in € [—1, 1]. This assumption is satisfied by all commonly used spectral methods. However,
this convergence is pointwise and nonuniform, and the rate of convergence is low. For convenience we define the
local variable = —1+ 23=7 such thatifz <x <b then—-1<& <1

Definition 2.1 (Gibbs Complementary BaiShe two parameter family®} (£)} is Gibbs complementary to the
family {¥ (x)} if the following are satisfied:
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(a) Orthogonality

(@7 ). @} (©)), =bu
For some local inner produgt, -), . Note that the scalar produ¢t -), is defined only in the intervdk, b]
and may be very different from the scalar product) which is defined on the intervél-1, 1] e.g. as defined
in (2).
(b) Spectral Convergence
The expansion of an analytic functi@i¢) in the basisp,ﬁ (&) converges exponentially fast, i.e.

A
g —> (g, @bmé@)‘ <€, q1>0
k=0

(c) The Gibbs Condition
There exists a numbgr < 1 such that if. = BN then

max
-16<1

N A
(D7), i (x(©)), | ﬂ?’élw@)‘ < (%) . k>N, I<h a<1

Condition (b) implies that the expansion of a functigin the basis{qblA (&)} converges exponentially fast gf
is analyticin—1 < & < 1 (corresponding ta < x < b). Condition (c) states that the projection{df; } for large k
on the low modes i (qﬁl’\ (&) with smalll) is exponentially smalin the interval—1 < & < 1.

The main result is now stated as a theorem [21].

Theorem 2.2 (The General Gibbs Resolution Theoremgt f(x) € L2[—1, 1] and analytic in[a, b] C [—1, 1].
{Wr(x)} is an orthonormal family with the inner produ¢t -). The family{q),ﬁ(g)} is Gibbs complementary to the
family {¥ (x)} as defined iffa)—(c) withA = BN.
Then
A
FE) =Y (fv. oo ()| <e Y, ¢>0

=0

max
a<x<h

The theorem states that if we ari@gn the expansion coefficientg, ¥;) of a discontinuous function, then even
if the series

N
> () ()
k=0
converges slowly it is still possible to get a rapidly converging approximatiofi(tg, in any interval free of
discontinuity, if one can find another a family that is Gibbs complementary to the original basis. In practice this
can be accomplished when intervals of smoothness are known.
In a series of papers we showed that the Gegenbauer polynomials

1
OL(E) = ——=CL (&)
hy

which are orthonormal under the inner prodyct), defined by

1
(g = / (1= £ V2 f(£)g(e) d )
]
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are Gibbs complementary to all commonly used spectral approximations:

Theorem 2.3. Let 8 = Z<. Then the Gegenbauer polynomials satisfy the condition

27 *
aN\*
< | =
k

for k > N, I <A =pN, 0<a <1 For ¥(x) = 36", |k| < oo (Fourier Functiony; For W (x) =

1
/ (1— E2-2CH &)W (x (6)) e
]

1/ h,}/z)Cg(x) (Chebyshev polynomigland for ¥ (x) = (1/ hZ)C,ﬁ‘(x) (Gegenbauer polynomials, note that
w= % corresponds to the Legendre polynomjals

2.1. The inverse Gegenbauer method

The theory presented in [20] does not prescribe an optimal way of constructing a Gibbs complementary basis.
The Gegenbauer method is not robust, it is sensitive to roundoff errors and to the choice of the pajaameters
A different implementation of the Gegenbauer postgssing method has been suggested recently by Shizgal and
Jung [22]. To explain the differences between the direct Gegenbauer method and the inverse Gegenbauer method
suggested in [22], consider the case of the Fourier expansion of a nonperiodic problem. The Fourier approximation

fn(x) of f(x)
N ~A
@ =" frd
k=N
where fi = (f (x), €¥7%), and we construct

@ =2t

1=0
whereg; = (fn, Cl)‘(x))k. In the Inverse method we use the relationship
fie= (i @), &)

and invert to findg;.
Thus if we define the matri®y; = (C}-(x), €¥7%) = %f}l CH(x) &% dx, and fi = (f, €F7)

m
> Wagl = fi
1=0

The method seems to be less sensitive to roundoff errors or to the choice of parameters. In particular if the
original function is a polynomial, the inverse method is exact. The authors proved that the Inverse method converges
exponentially for any. demonstrating great improvement over the direct method. On the other handf&0
the matrices are ill conditioned.

2.2. Fourier—Padé approximations

The methods discussed in the previgestions require the knowledge oktposition of discontinuity. In the
Padé approximation no such knaadge is necessarily required.
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Padé rational approximations have been considered as postprocessors for polynomials by several authors
[23-25]. Padé reconstruction recovers a hon-oscillatoiytism with a reduced overshoot at the singularity. This
is due to the possible existence of poles of some order for the denominator of Padé approximant. Geer and his
coworkers [25], suggested a nonlinear way of implementing the rational trigonometric approximations for even or
odd 2r-periodic piecewise smooth functions. In [24], the Fourier expansion is treated as a Laurent expansion, and
using the Fourier—Padé rational approach, the spectral convergence is obtained up to the discontinuity by subtract-
ing off the jump from the Fourier data, which requiras advance knowledge not only of position the singularity,
but also the magnitude of the jump. In our recent [26] wevk have designed two Fourier—Padé methods consid-
ering the general case of piecewise analytic functions with no advance knowledge of the singularity. Simple ways
of implementing Fourier—Padé Galerkin and Fourier—Padé collocation methods have been developed and applied
to simulate the solutions of nonlinear partial differential equations. Currently we study the merits of these methods
when applied to PDEs.

3. Linear hyperbolic equations

In the last section we demonstrated that spectralracgiwcan be recovered inesgtral approximations of non-
smooth functions. In this section we will review the same result for discontinuous solutions of linear hyperbolic

equations.
Consider the hyperbolic system of the form
iU
—=LU
at

with initial conditions

Ut=0)=Ug

The linearized Euler equations of gas dynamics is an example of such a system.
Letu be the Fourier Galerkin approximation given by:

<2—Z—£u,ei”kx)=0, _N<k<N
(Uo— uo, €™*)=0, —N<k<N

For smooth solutions we have the classical error estimate:
1
U —ul < K”UO”SW

This estimate, obviously, requires the initial conditiorbe smooth everywhere and does not apply in the case
of piecewise smooth initial conditions. Hewer, it has been proven in [27] that:

1
(U(T) —u(T), ¢)| < Kllglls (2)

for any smooth functiow. Similar results are obtained for the collocation (pseudospectral) method. However, the
numerical initial condition §o) has to be the Galerkin approximation to the initial conditids Alternatively,
a suitably preprocessed numeritatial condition should be used. The same results hold for Legendre and Cheby-
shev methods.

Eqg. (2) implies that the Fourier coefficientsiofipproximate those dff with spectral accuracy. It is therefore
possible to postprocess to get spectral accuracyéopbint values in any interval where the solutidns smooth.
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4. Nonlinear equations

The arguments presented in Section 3, demonstrating the possibility of extracting high order information from
spectral methods applied to linear equations, do not hold in the nonlinear case. However, Lax [28] argued that high
order information is contained in a convergent high resolution scheme. Several important advances have been made
towards establishing the convergence of spectral approximations when applied to nonlinear hyperbolic equations.

Consider the nonlinear hyperbolic system

af ()
ot + ox
The Fourier Galerkin method can be written as
dun  IPn f(un)
+
at ax
The method is unstable in general but can be stabilized by either the following methods:

=0 )

=0 (4)

e IntheSpectral Viscosity Metho&V) (see [29-31]) (4) is maodified:

dun n aPNf(uN)
ot 0x

en(— 1)s+l [Qm(x 1) % y”N}

where the operata®,, keeps only the high modes of the viscosity teﬁ%un:

i|~6 Z (ik)zsékﬁkeikx

en(— 1)5+l [Qm(x r)*

m<|k|<N
with
25 —1 m &Yoo
~CN%1, ~N’ 0 o 1—(— <0r<1
€ m < > ] Ok
o A better way to stabilize the scheme is Beper Spectral Viscosi{$pSV method.
9 B 8%
un + PNf( N) ( 1)s+1 Uy (5)
at ax x>

The stabilization techniques apply also to the Fourier collocation opergtoFor the polynomial meth-
ods the SSV viscosity term on the right-hand side of (5) is modified as follows)* ~1( 1—x2%)25 and
(—1)"’*1(%(1 - xz)%)"’ for the Chebyshev and Legendre methods respectively.

Note that for specttaccuracy the order must be proportional t&v, the number of polynomials (or grid points)
in the approximation. Thus viscosity changes with mesh refinement.

The theory developed by Tadmor and Tadmor and Maday (see [29-32]) demonstrates that both the SV and
SSV methods converge to the correct entropy solution for Fourier and Legendre approximations to scalar nonlinear
hyperbolic equations. Carpenter, @Bieb and Shu [33] proved that even for systems, if the solution converges it
converges to the correct entropy solution.

5. Adaptivefiltering

The straightforward use of the SV and SSV methods requires extra derivative computations thus effectively
doubling the computational cost. For this reason, most of the large scale spectral codes for high Mach number
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flows use filtering to stabilize the code. In fact, as will be explained in this section, filtering can be seen as an
efficient way of applying the SV and SSV methods.
To understand the relationship between the superviscosity method and the filtering method let

N
un (e, 1) =Y ap()gr(x)

k=0

wheregy, are the basis function used (Fourier, Chebyshev or Legendre). Al$g(dgt . . ., ay) be the coefficients
in the expansion

N
Py fun) =Y br(t)gi(x)
k=0
Then (5) can be written as
% = by — cenkZax (6)

Thus a typical step in a Runge—Kutta method for the SSV method can be written as:
a,'z"’l =ay + Atby — AtceNkzsa,'z"’l

Note that the stabilizing term is implicit, to prevent further limitation on the time step. In the filtering method we
change slightly the last term

2s
aZ+l =ay + Atby + (1 — ghteenk )a,'{’Jrl
yielding
Ao 725
a,’(H'l — g Atcenk (a; + Atby)

This is an exponential filter. The benefit of this method is that it does not require any extra derivative computation
and therefore does not increase the computational cost.

We note here that the parameteran be a function of the spatial stationThis means that in different regions
one can use viscosity terms of different orders. In the presence of local sharp gradients one should reduce the order
of the filter. To keep the spectral accuracy, thougshould be an increasing function df.

Thus the local adaptive filter is defined by

Nk
ul, = Zc(ﬁ>ak(t)¢(x) ()
k=0
where
o(w) = g™ (8)

As mentioneds = y (x) can change within the domain.

6. Numerical evidencefor high order accuracy

In this section we will present two examples which demonstrate that (formal) high order methods yield, indeed,
high order information that can be extracted by appropriate post processing. The first example involves the Fourier
method solution of the scalar Burgers equation
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Fig. 1. Spectral accuracy for the Burgers equation.

1
U;+(§U2> =0, x€[0,27), U(x,0) =sin(x)

with periodic boundary conditions. ime a shock develops and moves around the domain. The unpostprocessed
solution is first order accurate. However, Shu and Wangr@#jvered spectral accuracy, everywhere in the domain,
after post processing. Fig. 1 depicts the point errors in the postprocessed solution of the Burgers equation. The rate
of decrease of the error improves with the numiifgpoints, indicating spectral accuracy.

The second example [35] involves the WENO code for the quasi-one-dimensional nozzle flow. The governing
equations are the usual Euler system plus a source term:

p ou A pu
ou | + P+,0u2 =-= ,ou2
e) \wp+py/, A \up+E

wherep, u, P, and E are the density, velocity, pressure antht specific energy (respectively), add= A(x) is

the cross area function of the nozzle afid = %A. The shape of the nozzle is calculated by the requirement of
linear distribution of Mach number frod = 0.8 at the inlet ta\l = 1.8 at the exit assuming the flow is isentropic
and fully expanded. The equation of state is

12
P=(y —-—Dp E—Eu

We compute the solution at steady-state by marching in time until the residuals go down to machine zero. The
steady-state solution has a shock halfway across thauom/e separate the domain into two regions in space,
the left of the shock and the and right of the shock. In eafcthese regions the solution is analytic. The region
to the right of the shock contains information that traveled through the shock, the left does not. As expected, the
region to the left maintainsigh order accuracy away from the shock, while in the region to the right of the shock,
the error is only first order accurate (Table 1). After postgssing the region to the right of the shock, high order
accuracy is recovered (Table 2). In the calculation of the error we exclude the point of the shock and one additional
point. Thus, the domain in which we are measuring the error is actually getting closer and closer to the shock as
increases (demonstrating uniform cengence). The infinity norm error is thugD) before postprocessing (which
is in agreement with the behavior of the Gibbs phenomenon right near the discontinuity) but the order increases
dramatically after postprocessing.
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Table 1

The errors from the steady state computation (Exam- Table 2

ple 1), before postprocessing. The errors are calcu- The errors from the steady state computation (Example 1), after postprocess-

lated up to one gridpoint away from the shock ing. The errors are calculated up to one gridpoint away from the shock
n I error order loo €rror n A m  lperror I order I error loo Order
600 0.0000986 0.00137 600 3 3 000016065 00816
800 0.0000699 1.19 0.00109 800 3 4 000005823 H2 0000333 311

1000 0.0000655 0.29 0.00127 1000 4 5 (000002605 K9] 0.000166 313

1200 0.0000584 0.63 0.00119 1200 5 6 000001313 375 00000819 B

1400 0.0000554 0.34 0.00127 1400 6 7 0000006169 & 0.0000409 %

1600 0.0000508 0.65 0.00119 1600 6 8 0000003968 RO 000001726 616

1800 0.0000479 0.50 0.00119 1800 7 9 (0000002528 B3 0000008953 &7

7. Computational results

There is extensive literature repogimesults of the application of spectral methods to shock wave problems
(see for example [36,37,29,30,32,31]). In this section we do not attempt to review this literature. We will rather
discuss here some selective cases of applications of spectral methods to complicated interactions of shock waves
and complex flow patterns. For those problems, highroadeuracy is vitally needed apture fine details of the
flow. In [38], the author considered interactions of shock waves and entropy waves as well as interactions of shock
waves and vortices. The calculations involved solutions of the two dimensional Euler equations and the results
compared well with ENO methods.

In [39] the authors compared ENO and spectral methods for the numerical simulations of shock—cylinder inter-
actions in the case of reactive flows. The authors dematestithat spectral methods required less resources than
the ENO schemes for comparable accuracy.

A more extensive study of spectrahsilations of compressible reactive high Mach number flows has been
reported in [40]. In this work the interaction of shock waves and hydrogen jets were studied. This involve the
solution of the Navier—Stokes equations with chemical interactions. The work gives a clear demonstration of the
fact that spectral methods are very suitable for studies of complicated flows that involve shock waves. The mixing
and fuel breaking were obtained very accurately. A sesfasumerical simulations are carried out to investigate
the convergence properties of both the Spectral schemh¢éh® WENO scheme. The spectral calculations display
the fine structural details of the mixing inside the hydrogen jet, and patterns of combustion. In Fig. 2 we present
the flow field resulting from interactions of shock waves and hydrogen jets.

We would like here to present some yet unpublishedltesoncerning the Richtney—Meshkov instabilities.

The Richtmyer—Meshkov Instability (RMI) can be defined in its simplest form as the resulting flow when a shock
impinges on the interface between two materials, fluids, etc. When the interface between the substances is not
parallel to the shock front, vorticity will be induced. The RMI is encountered in a variety of physical contexts
such as in the mixing of fuel with oxidants in SCRAMjets and in Inertial Confinement Fusion (ICF). From the
point of view of the numerical calculation, we can break the RMI problem into two parts. First, we have the
issue of reliably calculating the motion of a possibly very strong shock wave, and second, we have the issue of
reliably calculating the mix that ensues after this shoelkavaccelerates the interface. It is in this second area of
calculating the ensuing mix where high order numerical schemes offer unparalleled efficiency. In the following
we bring comparisons of two high order schemes, the WENO scheme and spectral methods. Simulations, using
various interface thicknesses and resolutions, are computed and terminated at some representative time after the
shock had transmitted sufficiently far away fronetinterface and before exiting the physical domain.

As evidenced from the results of the Spectral and the WENO calculations shown below, the following major
features of the Richtmyer—Meshkov instability can be observed (see Fig. 3) at+irf6 x 10 s, namely,

o Wave generated by the shock refraction behind the gas interface in Box 1.
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Jet-Interface Contact

Iplift of Air-H2 Interface Formation of Flame Jet

Fig. 2. Flame production as a resaftshock hydrogen jet interaction.

N -

2 rho: 0.0010 0.0028 0.0047 0.0065 0.0083

05

X

Fig. 3. The numbered regions enclose the most prominent flow features of the Richtmyer—Meshkov instability at5itne 1076,

e The penetration of the heavy (Xe) to light (Ar) fluid causes the deformation of the interface into a large mush-
room shape structures in Box 2 and the opposite in Box 5. They are referred as Spike and Bubble respectively,
in the literatures. They move in ttogposite direction relative to each otlad form a ever larger turbulence
mixing zone.

e Pressure wave along the transmitted shock in Box 3.

o A small jet and its vortical structure located in Box 4. The contact discontinuity develops into a more compli-
cated vortical rollups in a finer and long term simulation, possibly caused by the Kelvin—Helmholtz instability.

o \ortical rollups of the gaseous interface inside Box 6.



D. Gottlieb, S. Gottlieb / C. R. Mecanique 333 (2005) 3-16 13

T - T
o 100D TMED AGTE. 4IE-0S BISET o 10ED) 2MED AGTE BIET DISED iho 1006 2META AGTED 63160 AIE0H o 1006 L0468 AATED GH1ED 03SE

v ZOGEDS LIBESOL AETED3 A4BEMD 17EO V. LODESDS L1BEeDL AETEW0 MIEND 127ED

Fig. 4. Convergence Study= 0.6 cm: density (top row) and V-velocity (bottom row) contour plot of the Richtmyer—Meshkov instability as
computed by the Spectral scheme and the WENO-LF-5 scheme. Domain length Iy, =5 cm. The interface thickness= 0.6 cm. The

final time isr = 50 x 10~6 s. The resolution of the Spectral schemes are23@8 (left), 512x 256 (middle left) and 1024 512 (middle
right) and the WENO scheme is 1024512 (right).
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Fig. 5. Convergence studly= 0.2 cm: density (top row) and V-velocity (bottom row) contour plot of the Richtmyer—-Meshkov instability as
computed by the Spectral scheme. Domain length is L, =5 cm. The interface thickness= 0.2 cm. The final time ig = 50 x 106 s,
The resolution of the spectral schemes are 3842 (left), 512x 256 (middle) and 1024 256 (right).

The global large and median features (Box 1, 2, 3nd &) are well captured accurately by both numerical
schemes for a given resolution. It is unclear, however, if the smaller rollups along the gases interface (Box 6) pre-
sented in the high resolution/high order cases are physical due to the non-dissipative nature of the Euler equations
or numerical due to the oscillatory nature of the numerical schemes or both.

For long time integration, the smoothest of the gaseous interface at the earlier development yields a slightly
smoother and rounder interface shape at the later time as seen in the WENO calculation. The overall global struc-
tures, however, seem to agree very wellang the calculations performed here.
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Fig. 6. Convergence studly= 0.2 cm: density (top row) and V-velocity (bottom row) contour plot of the Richtmyer—-Meshkov instability as
computed by the WENO-LF-5 scheme. Domain length is Ly = 5 cm. The interface thicknegs= 0.2 cm. The final time i$ = 50 x 1076,
The resolution of the WENO-LF-5 schemes are 258628 (left), 512x 256 (middle) and 1024 512 (right).

Fig. 7. Comparisons of WENO of different orders and Spectral methddsl @rder WENO on top left, fifth order on top middle, seventh order
— top right, ninth order — bottom left, eleventhder — bottom middle and spectral on bottom right.

We first examine the convergence properties of blaehSpectral scheme and theEWO-LF-5 finite difference
scheme. For this, we used a thicker interface With0.6 cm to establish the convergence of the numerical schemes
of the large and medium scale structures (Fig. 4). This avoids the possible contamination of numerical artifacts due
to high gradients generated along the shock-interface interaction and bypass the issue of under-resolved fine scale
physical structures. Furthermore, the spectral solutions are not post-processed by any existing post-processing
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algorithms to remove the Gibbs oscillations. It can observed that the large and medium scale structures such as
the transmitted shock, the location of the triple point, the shocked-interface velocity, pressure waves and vorticity
generation, are basically in excellent agreement wibh others. The weak vertical wave located downstream
behind the interface is a left over entropy wave from the initial shock condition.

Next we examine the case in which the interface thickness is reduced fz0@6 cm tos = 0.2 cm. The density
p and velocityV of the solution of the Spectral and WENO-LF-5 runs are shown in Figs. 5 and 6 respectively, at
timer = 50x 10~ s with various resolutions. Here too it can be observed that the large and median scale structures
such as transmitted shock, shocked-interface velocitlystuock triple point are in excellent agreement with each
others. Some discrepancies of the fine scale structloeg the gaseous interface, as can be expected for numerical
simulations of solutions which are sensitive to perturbation in nature, are observed.

In Fig. 7 we compare the structure of the interface as computed by WENO schemes of different orders (third
to eleventh), and spectral methods. It is clear that the WENO results converge to the spectral ones as the order of
accuracy is raised.

It is evident from the extensive numerical studies that spectral methods can serve as a useful tool in simulating
flows exhibiting unsteady fine structures. In participectral methods proved to accurately capture the details of
high Mach number compressible reactive flows.
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