
/

ver, high
ula-
nt flows,
dvances in

recovery

nd long
ess-
h Mach
phenom-
es
his
s

C. R. Mecanique 333 (2005) 3–16

http://france.elsevier.com/direct/CRAS2B

High-Order Methods for the Numerical Simulation of Vortical and Turbulent Flows

Spectral methods for compressible reactive flows

David Gottlieba,1,∗, Sigal Gottliebb,2

a Division of Applied Mathematics, Brown University, Providence, RI, USA
b University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Available online 28 December 2004

Abstract

High order simulations are necessary in order to capture fine details in resolving supersonic reactive flows. Howe
Mach number compressible flows feature sharp gradients and discontinuities, which present a challenge to successful sim
tions using high order methods. Spectral methods have proven a powerful tool in simulation of incompressible turbule
and recent advances allow the application of spectral methods to compressible reactive flows. We review the recent a
the theory and application of spectral methods which allow stable computations of discontinuous phenomena, and the
of high order information via postprocessing, and present applications of high Mach number reactive flows.To cite this article:
D. Gottlieb, S. Gottlieb, C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

High order methods are the choice methods in numerical computations requiring fine scale resolution a
time integrations. In particular, spectral methods have contributed to our understanding of turbulence by succ
fully simulating incompressible turbulent flows. Several issues arise when applying spectral methods to hig
number compressible flows, which feature sharp gradients and discontinuities. In the presence of such
ena the accuracy of high order methods deteriorates. This is due to the well known Gibbs phenomenon that stat
that the pointwise convergence of global approximationsof discontinuous functions is at most first order. In t
case the approximations are oscillatory and converge nonuniformly, seemingly rendering global methods, such a
spectral methods, useless for simulating compressible flows.
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2 This work was supported by NSF grant no. DMS 0106743.
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Recent advances in the theory and application of spectral methods indicate that high order information is r
tained in stable spectral simulations of discontinuous phenomena and can be recovered by suitable postp
techniques. The goal of this paper is to review the state of the art in applying spectral methods to the nu
solution of discontinuous problems.

In Section 2 we briefly review the issues involved in global approximations of nonsmooth functions. We p
sufficient conditions under which high order information may be extracted by postprocessing, and discu
recently developed postprocessors. The question is whether spectral approximationsof discontinuous solutions o
partial differential equations retain high order accurate information. We review the theory for linear hyperbo
equations in Section 3 and explain whyand how high order accuracy information is retained in high order sim
ulations of linear discontinuous problems. In Section 4 we discuss the stabilization of spectral methods applie
to nonlinear hyperbolic equations and in Section 5 we present efficient ways of stabilizing these schemes us
adaptive filters. In Section 6 we bring numerical evidence that design accuracy can be achieved even for no
ear systems of equations after postprocessing. Several examples of successful applications of spectral m
complicated interactions of shock waves and complex flows are presented in Section 7. Many more cont
have been made in [1–19].

2. Approximation theory

The partial Fourier sum

N∑
k=−N

f̂k eπ ikx

based on the first 2N + 1 Fourier coefficients of a nonsmooth functionf (x), converges slowly away from the di
continuity and features non-decaying oscillations. This behavior of global approximationsof nonsmooth functions
is known as the classical Gibbs phenomenon. (See [20].) The same behavior is observed for all global ap
tions such as orthogonal polynomials, Bessel functions, etc.

In this section we present sufficient conditions for the removal of the Gibbs phenomenon and show that t
conditions are satisfied for all commonly used spectral approximations (Fourier, Chebyshev and Legend
main result can be summarized as follows: the slow convergence of the expansion of a discontinuous
in any basis can be completely overcome, in any interval of smoothness, provided that this basis has
complementary basis (to be defined later).

Consider a functionf (x) ∈ L2[−1,1] and assume that there is a subinterval[a, b] ⊂ [−1,1] in which f (x) is
analytic. Let the family{Ψk(x)}, be orthonormal under a scalar product(·, ·), and denote the finite expansion
f (x) in this basis byfN(x),

fN(x) =
N∑

k=0

(f,Ψk)Ψk(x)

The standard assumption is

lim
N→∞

∣∣f (x) − fN (x)
∣∣ = 0

almost everywhere inx ∈ [−1,1]. This assumption is satisfied by all commonly used spectral methods. How
this convergence is pointwise and nonuniform, and the rate of convergence is low. For convenience we d
local variable,ξ = −1+ 2x−a

b−a
such that ifa � x � b then−1 � ξ � 1.

Definition 2.1 (Gibbs Complementary Basis). The two parameter family{Φλ
k (ξ)} is Gibbs complementary to th

family {Ψk(x)} if the following are satisfied:
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For some local inner product〈·, ·〉λ. Note that the scalar product〈·, ·〉λ is defined only in the interval[a, b]
and may be very different from the scalar product(·, ·) which is defined on the interval[−1,1] e.g. as defined
in (1).

(b) Spectral Convergence
The expansion of an analytic functiong(ξ) in the basisΦλ

k (ξ) converges exponentially fast, i.e.

max
−1�ξ�1

∣∣∣∣g(ξ) −
λ∑

k=0

〈g,Φλ
k 〉λΦλ

k (ξ)

∣∣∣∣ � e−q1λ, q1 > 0

(c) The Gibbs Condition
There exists a numberβ < 1 such that ifλ = βN then∣∣〈Φλ

l (ξ),Ψk

(
x(ξ)

)〉
λ

∣∣ max
−1�ξ�1

∣∣Φλ
l (ξ)

∣∣ �
(

αN

k

)λ

, k > N, l � λ, α < 1

Condition (b) implies that the expansion of a functiong in the basis{Φλ
l (ξ)} converges exponentially fast ifg

is analytic in−1 � ξ � 1 (corresponding toa � x � b). Condition (c) states that the projection of{Ψk} for large k
on the low modes inΦ (Φλ

l (ξ) with small l) is exponentially smallin the interval−1� ξ � 1.
The main result is now stated as a theorem [21].

Theorem 2.2 (The General Gibbs Resolution Theorem). Let f (x) ∈ L2[−1,1] and analytic in[a, b] ⊂ [−1,1].
{Ψk(x)} is an orthonormal family with the inner product(·, ·). The family{Φλ

k (ξ)} is Gibbs complementary to th
family {Ψk(x)} as defined in(a)–(c), with λ = βN .

Then

max
a�x�b

∣∣∣∣f (x) −
λ∑

l=0

〈fN ,Φλ
l 〉λΦλ

l

(
ξ(x)

)∣∣∣∣ � e−qN , q > 0

The theorem states that if we are given the expansion coefficients(f,Ψk) of a discontinuous function, then eve
if the series

N∑
k=0

(f,Ψk)Ψk(x)

converges slowly it is still possible to get a rapidly converging approximation tof (x), in any interval free of
discontinuity, if one can find another a family that is Gibbs complementary to the original basis. In practi
can be accomplished when intervals of smoothness are known.

In a series of papers we showed that the Gegenbauer polynomials

Φλ
k (ξ) = 1√

hλ
k

Cλ
k (ξ)

which are orthonormal under the inner product〈·, ·〉λ defined by

〈f,g〉λ =
1∫

−1

(1− ξ2)λ−1/2f (ξ)g(ξ)dξ (1)
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Theorem 2.3. Letβ = 2πε
27 . Then the Gegenbauer polynomials satisfy the condition:∣∣∣∣∣

1∫
−1

(1− ξ2)λ−1/2Cλ
l (ξ)Ψk

(
x(ξ)

)
dξ

∣∣∣∣∣ �
(

αN

k

)λ

for k > N , l � λ = βN , 0 < α < 1. For Ψk(x) = 1
2eikπx , |k| � ∞ (Fourier Functions); For Ψk(x) =

(1/

√
h

1/2
k )C0

k (x) (Chebyshev polynomials) and forΨk(x) = (1/

√
h

µ
k )C

µ
k (x) (Gegenbauer polynomials, note th

µ = 1
2 corresponds to the Legendre polynomials).

2.1. The inverse Gegenbauer method

The theory presented in [20] does not prescribe an optimal way of constructing a Gibbs complementa
The Gegenbauer method is not robust, it is sensitive to roundoff errors and to the choice of the parametersλ andm.
A different implementation of the Gegenbauer postprocessing method has been suggested recently by Shizga
Jung [22]. To explain the differences between the direct Gegenbauer method and the inverse Gegenbau
suggested in [22], consider the case of the Fourier expansion of a nonperiodic problem. The Fourier appro
fN (x) of f (x)

fN(x) =
N∑

k=−N

f̂k eikπx

wheref̂k = (f (x),eikπx), and we construct

f m
N (x) =

m∑
l=0

ĝlC
λ
l (x)

whereĝl = 〈fN ,Cλ
l (x)〉λ. In the Inverse method we use the relationship

f̂k = (
f m

N (x),eikπx
)

and invert to findĝl .
Thus if we define the matrixWkl = (Cλ

l (x),eikπx) = 1
2

∫ 1
−1 Cλ

l (x)eikπx dx, andf̂k = (f,eikπx)

m∑
l=0

Wklg
λ
l = f̂k

The method seems to be less sensitive to roundoff errors or to the choice of parameters. In particul
original function is a polynomial, the inverse method is exact. The authors proved that the Inverse method co
exponentially for anyλ demonstrating great improvement over the direct method. On the other hand form > 20
the matrices are ill conditioned.

2.2. Fourier–Padé approximations

The methods discussed in the previoussections require the knowledge of the position of discontinuity. In the
Padé approximation no such knowledge is necessarily required.
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Padé rational approximations have been considered as postprocessors for polynomials by severa
[23–25]. Padé reconstruction recovers a non-oscillatory solution with a reduced overshoot at the singularity. T
is due to the possible existence of poles of some order for the denominator of Padé approximant. Gee
coworkers [25], suggested a nonlinear way of implementing the rational trigonometric approximations for
odd 2π -periodic piecewise smooth functions. In [24], the Fourier expansion is treated as a Laurent expans
using the Fourier–Padé rational approach, the spectral convergence is obtained up to the discontinuity by
ing off the jump from the Fourier data, which requires the advance knowledge not only of position the singula
but also the magnitude of the jump. In our recent [26] work, we have designed two Fourier–Padé methods con
ering the general case of piecewise analytic functions with no advance knowledge of the singularity. Simp
of implementing Fourier–Padé Galerkin and Fourier–Padé collocation methods have been developed an
to simulate the solutions of nonlinear partial differential equations. Currently we study the merits of these m
when applied to PDEs.

3. Linear hyperbolic equations

In the last section we demonstrated that spectral accuracy can be recovered in spectral approximations of non
smooth functions. In this section we will review the same result for discontinuous solutions of linear hyp
equations.

Consider the hyperbolic system of the form

∂U

∂t
= LU

with initial conditions

U(t = 0) = U0

The linearized Euler equations of gas dynamics is an example of such a system.
Let u be the Fourier Galerkin approximation given by:(

∂u

∂t
−Lu,eiπkx

)
= 0, −N � k � N

(U0 − u0,eiπkx) = 0, −N � k � N

For smooth solutions we have the classical error estimate:

‖U − u‖ � K‖U0‖s
1

Ns−1

This estimate, obviously, requires the initial condition to be smooth everywhere and does not apply in the
of piecewise smooth initial conditions. However, it has been proven in [27] that:∣∣(U(T ) − u(T ),φ

)∣∣ � K‖φ‖s
1

Ns
(2)

for any smooth functionφ. Similar results are obtained for the collocation (pseudospectral) method. Howev
numerical initial condition (u0) has to be the Galerkin approximation to the initial conditionU0. Alternatively,
a suitably preprocessed numericalinitial condition should be used. The same results hold for Legendre and C
shev methods.

Eq. (2) implies that the Fourier coefficients ofu approximate those ofU with spectral accuracy. It is therefo
possible to postprocess to get spectral accuracy for the point values in any interval where the solutionU is smooth.
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4. Nonlinear equations

The arguments presented in Section 3, demonstrating the possibility of extracting high order informatio
spectral methods applied to linear equations, do not hold in the nonlinear case. However, Lax [28] argued
order information is contained in a convergent high resolution scheme. Several important advances have b
towards establishing the convergence of spectral approximations when applied to nonlinear hyperbolic eq

Consider the nonlinear hyperbolic system

∂U

∂t
+ ∂f (U)

∂x
= 0 (3)

The Fourier Galerkin method can be written as

∂uN

∂t
+ ∂PNf (uN)

∂x
= 0 (4)

The method is unstable in general but can be stabilized by either the following methods:

• In theSpectral Viscosity Method(SV) (see [29–31]) (4) is modified:

∂uN

∂t
+ ∂PNf (uN)

∂x
= εN(−1)s+1 ∂s

∂xs

[
Qm(x, t) ∗ ∂suN

∂xs

]
where the operatorQm keeps only the high modes of the viscosity term∂

2

∂x2 un:

εN(−1)s+1 ∂s

∂xs

[
Qm(x, t) ∗ ∂suN

∂xs

]
∼ ε

∑
m<|k|<N

(ik)2sQ̂kûk eikx

with

ε ∼ CN2s−1; m ∼ Nθ , θ <
2s − 1

2s
; 1−

(
m

|k|
)(2s−1)/θ

� Q̂k � 1

• A better way to stabilize the scheme is theSuper Spectral Viscosity(SSV) method.

∂uN

∂t
+ ∂PNf (uN)

∂x
= εN(−1)s+1 ∂2s

∂x2s
uN (5)

The stabilization techniques apply also to the Fourier collocation operatorIN . For the polynomial meth
ods the SSV viscosity term on the right-hand side of (5) is modified as follows:(−1)s−1(

√
1− x2 ∂

∂x
)2s and

(−1)s−1( ∂
∂x

(1− x2) ∂
∂x

)s for the Chebyshev and Legendre methods respectively.
Note that for spectral accuracy the orders must be proportional toN , the number of polynomials (or grid point

in the approximation. Thus viscosity changes with mesh refinement.
The theory developed by Tadmor and Tadmor and Maday (see [29–32]) demonstrates that both the

SSV methods converge to the correct entropy solution for Fourier and Legendre approximations to scalar n
hyperbolic equations. Carpenter, Gottlieb and Shu [33] proved that even for systems, if the solution converg
converges to the correct entropy solution.

5. Adaptive filtering

The straightforward use of the SV and SSV methods requires extra derivative computations thus eff
doubling the computational cost. For this reason, most of the large scale spectral codes for high Mach
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flows use filtering to stabilize the code. In fact, as will be explained in this section, filtering can be seen
efficient way of applying the SV and SSV methods.

To understand the relationship between the superviscosity method and the filtering method let

uN(x, t) =
N∑

k=0

ak(t)φk(x)

whereφk are the basis function used (Fourier, Chebyshev or Legendre). Also, letbk(a0, . . . , aN) be the coefficients
in the expansion

PNf (uN) =
N∑

k=0

bk(t)φk(x)

Then (5) can be written as

∂ak

∂t
= bk − cεNk2sak (6)

Thus a typical step in a Runge–Kutta method for the SSV method can be written as:

an+1
k = an

k + tbn
k − tcεNk2san+1

k

Note that the stabilizing term is implicit, to prevent further limitation on the time step. In the filtering metho
change slightly the last term

an+1
k = an

k + tbn
k + (1− etcεNk2s

)an+1
k

yielding

an+1
k = e−tcεNk2s

(an
k + tbn

k )

This is an exponential filter. The benefit of this method is that it does not require any extra derivative comp
and therefore does not increase the computational cost.

We note here that the parameters can be a function of the spatial stationx. This means that in different region
one can use viscosity terms of different orders. In the presence of local sharp gradients one should reduce
of the filter. To keep the spectral accuracy, though,s should be an increasing function ofN .

Thus the local adaptive filter is defined by

uσ
N =

N∑
k=0

σ

(
k

N

)
ak(t)φ(x) (7)

where

σ(ω) = e−αω2γ s

(8)

As mentionedγ = γ (x) can change within the domain.

6. Numerical evidence for high order accuracy

In this section we will present two examples which demonstrate that (formal) high order methods yield,
high order information that can be extracted by appropriate post processing. The first example involves the
method solution of the scalar Burgers equation
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Fig. 1. Spectral accuracy for the Burgers equation.

Ut +
(

1

2
U2

)
x

= 0, x ∈ [0,2π), U(x,0) = sin(x)

with periodic boundary conditions. Intime a shock develops and moves around the domain. The unpostpro
solution is first order accurate. However, Shu and Wang [34]recovered spectral accuracy, everywhere in the dom
after post processing. Fig. 1 depicts the point errors in the postprocessed solution of the Burgers equation
of decrease of the error improves with the number of points, indicating spectral accuracy.

The second example [35] involves the WENO code for the quasi-one-dimensional nozzle flow. The go
equations are the usual Euler system plus a source term:(

ρ

ρu

E

)
+

(
ρu

P + ρu2

u(P + E)

)
x

= −Ax

A

(
ρu

ρu2

u(P + E)

)

whereρ,u,P, andE are the density, velocity, pressure and total specific energy (respectively), andA = A(x) is
the cross area function of the nozzle andAx = dA

dx
. The shape of the nozzle is calculated by the requireme

linear distribution of Mach number fromM = 0.8 at the inlet toM = 1.8 at the exit assuming the flow is isentrop
and fully expanded. The equation of state is

P = (γ − 1)ρ

(
E − 1

2
u2

)
We compute the solution at steady-state by marching in time until the residuals go down to machine ze

steady-state solution has a shock halfway across the domain. We separate the domain into two regions in sp
the left of the shock and the and right of the shock. In eachof these regions the solution is analytic. The reg
to the right of the shock contains information that traveled through the shock, the left does not. As expec
region to the left maintainshigh order accuracy away from the shock, while in the region to the right of the s
the error is only first order accurate (Table 1). After postprocessing the region to the right of the shock, high or
accuracy is recovered (Table 2). In the calculation of the error we exclude the point of the shock and one a
point. Thus, the domain in which we are measuring the error is actually getting closer and closer to the shoN

increases (demonstrating uniform convergence). The infinity norm error is thus O(1) before postprocessing (whic
is in agreement with the behavior of the Gibbs phenomenon right near the discontinuity) but the order in
dramatically after postprocessing.
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Table 1
The errors from the steady state computation (Exam-
ple 1), before postprocessing. The errors are calcu-
lated up to one gridpoint away from the shock

n l2 error order l∞ error

600 0.0000986 0.00137
800 0.0000699 1.19 0.00109

1000 0.0000655 0.29 0.00127
1200 0.0000584 0.63 0.00119
1400 0.0000554 0.34 0.00127
1600 0.0000508 0.65 0.00119
1800 0.0000479 0.50 0.00119

Table 2
The errors from the steady state computation (Example 1), after postpro
ing. The errors are calculated up to one gridpoint away from the shock

n λ m l2 error l2 order l∞ error l∞ order

600 3 3 0.00016065 0.000816
800 3 4 0.00005823 3.52 0.000333 3.11

1000 4 5 0.00002605 3.6 0.000166 3.13
1200 5 6 0.00001313 3.75 0.0000819 3.8
1400 6 7 0.000006169 4.9 0.0000409 4.5
1600 6 8 0.000003968 3.30 0.00001726 6.46
1800 7 9 0.000002528 3.83 0.000008953 5.57

7. Computational results

There is extensive literature reporting results of the application of spectral methods to shock wave prob
(see for example [36,37,29,30,32,31]). In this section we do not attempt to review this literature. We will
discuss here some selective cases of applications of spectral methods to complicated interactions of sho
and complex flow patterns. For those problems, high order accuracy is vitally needed tocapture fine details of th
flow. In [38], the author considered interactions of shock waves and entropy waves as well as interactions
waves and vortices. The calculations involved solutions of the two dimensional Euler equations and the
compared well with ENO methods.

In [39] the authors compared ENO and spectral methods for the numerical simulations of shock–cylind
actions in the case of reactive flows. The authors demonstrated that spectral methods required less resources
the ENO schemes for comparable accuracy.

A more extensive study of spectral simulations of compressible reactive high Mach number flows has
reported in [40]. In this work the interaction of shock waves and hydrogen jets were studied. This invo
solution of the Navier–Stokes equations with chemical interactions. The work gives a clear demonstratio
fact that spectral methods are very suitable for studies of complicated flows that involve shock waves. The
and fuel breaking were obtained very accurately. A seriesof numerical simulations are carried out to investig
the convergence properties of both the Spectral scheme and the WENO scheme. The spectral calculations disp
the fine structural details of the mixing inside the hydrogen jet, and patterns of combustion. In Fig. 2 we
the flow field resulting from interactions of shock waves and hydrogen jets.

We would like here to present some yet unpublished results concerning the Richtmyer–Meshkov instabilities
The Richtmyer–Meshkov Instability (RMI) can be defined in its simplest form as the resulting flow when a
impinges on the interface between two materials, fluids, etc. When the interface between the substanc
parallel to the shock front, vorticity will be induced. The RMI is encountered in a variety of physical co
such as in the mixing of fuel with oxidants in SCRAMjets and in Inertial Confinement Fusion (ICF). Fro
point of view of the numerical calculation, we can break the RMI problem into two parts. First, we ha
issue of reliably calculating the motion of a possibly very strong shock wave, and second, we have the
reliably calculating the mix that ensues after this shock wave accelerates the interface. It is in this second are
calculating the ensuing mix where high order numerical schemes offer unparalleled efficiency. In the fo
we bring comparisons of two high order schemes, the WENO scheme and spectral methods. Simulatio
various interface thicknesses and resolutions, are computed and terminated at some representative tim
shock had transmitted sufficiently far away from the interface and before exiting the physical domain.

As evidenced from the results of the Spectral and the WENO calculations shown below, the following
features of the Richtmyer–Meshkov instability can be observed (see Fig. 3) at timet = 50× 10−6 s, namely,

• Wave generated by the shock refraction behind the gas interface in Box 1.
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Fig. 2. Flame production as a resultof shock hydrogen jet interaction.

Fig. 3. The numbered regions enclose the most prominent flow features of the Richtmyer–Meshkov instability at timet = 50× 10−6 s.

• The penetration of the heavy (Xe) to light (Ar) fluid causes the deformation of the interface into a large
room shape structures in Box 2 and the opposite in Box 5. They are referred as Spike and Bubble resp
in the literatures. They move in theopposite direction relative to each other and form a ever larger turbulenc
mixing zone.

• Pressure wave along the transmitted shock in Box 3.
• A small jet and its vortical structure located in Box 4. The contact discontinuity develops into a more c

cated vortical rollups in a finer and long term simulation, possibly caused by the Kelvin–Helmholtz insta
• Vortical rollups of the gaseous interface inside Box 6.
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Fig. 4. Convergence Studyδ = 0.6 cm: density (top row) and V-velocity (bottom row) contour plot of the Richtmyer–Meshkov instabili
computed by the Spectral scheme and the WENO-LF-5 scheme. Domain length inx is Lx = 5 cm. The interface thicknessδ = 0.6 cm. The
final time is t = 50× 10−6 s. The resolution of the Spectral schemes are 256× 128 (left), 512× 256 (middle left) and 1024× 512 (middle
right) and the WENO scheme is 1024× 512 (right).

Fig. 5. Convergence studyδ = 0.2 cm: density (top row) and V-velocity (bottom row) contour plot of the Richtmyer–Meshkov instabili
computed by the Spectral scheme. Domain length inx is Lx = 5 cm. The interface thicknessδ = 0.2 cm. The final time ist = 50× 10−6 s.
The resolution of the spectral schemes are 384× 192 (left), 512× 256 (middle) and 1024× 256 (right).

The global large and median features (Box 1, 2, 3, 4 and 5) are well captured accurately by both numer
schemes for a given resolution. It is unclear, however, if the smaller rollups along the gases interface (Box
sented in the high resolution/high order cases are physical due to the non-dissipative nature of the Euler e
or numerical due to the oscillatory nature of the numerical schemes or both.

For long time integration, the smoothest of the gaseous interface at the earlier development yields a
smoother and rounder interface shape at the later time as seen in the WENO calculation. The overall glob
tures, however, seem to agree very well among the calculations performed here.
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Fig. 6. Convergence studyδ = 0.2 cm: density (top row) and V-velocity (bottom row) contour plot of the Richtmyer–Meshkov instabili
computed by the WENO-LF-5 scheme. Domain length inx is Lx = 5 cm. The interface thicknessδ = 0.2 cm. The final time ist = 50×10−6 s.
The resolution of the WENO-LF-5 schemes are 256× 128 (left), 512× 256 (middle) and 1024× 512 (right).

Fig. 7. Comparisons of WENO of different orders and Spectral methods. Third order WENO on top left, fifth order on top middle, seventh or
– top right, ninth order – bottom left, eleventh order – bottom middle and spectral on bottom right.

We first examine the convergence properties of both the Spectral scheme and the WENO-LF-5 finite difference
scheme. For this, we used a thicker interface withδ = 0.6 cm to establish the convergence of the numerical sche
of the large and medium scale structures (Fig. 4). This avoids the possible contamination of numerical artif
to high gradients generated along the shock-interface interaction and bypass the issue of under-resolved
physical structures. Furthermore, the spectral solutions are not post-processed by any existing post-p
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algorithms to remove the Gibbs oscillations. It can observed that the large and medium scale structures
the transmitted shock, the location of the triple point, the shocked-interface velocity, pressure waves and
generation, are basically in excellent agreement witheach others. The weak vertical wave located downstr
behind the interface is a left over entropy wave from the initial shock condition.

Next we examine the case in which the interface thickness is reduced fromδ = 0.6 cm toδ = 0.2 cm. The density
ρ and velocityV of the solution of the Spectral and WENO-LF-5 runs are shown in Figs. 5 and 6 respectiv
time t = 50×10−6 s with various resolutions. Here too it can be observed that the large and median scale st
such as transmitted shock, shocked-interface velocity and shock triple point are in excellent agreement with e
others. Some discrepancies of the fine scale structures along the gaseous interface, as can be expected for num
simulations of solutions which are sensitive to perturbation in nature, are observed.

In Fig. 7 we compare the structure of the interface as computed by WENO schemes of different orde
to eleventh), and spectral methods. It is clear that the WENO results converge to the spectral ones as the
accuracy is raised.

It is evident from the extensive numerical studies that spectral methods can serve as a useful tool in si
flows exhibiting unsteady fine structures. In particularspectral methods proved to accurately capture the deta
high Mach number compressible reactive flows.
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