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Solving A x
�
=b

�
Using a Modified Conjugate

Gradient Method Based on Roots of A

Paul F. Fischer1 and Sigal Gottlieb2
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We consider the modified conjugate gradient procedure for solving Ax
�
=b

�
in

which the approximation space is based upon the Krylov space associated with
A1�p and b

�
, for any integer p. For the square-root MCG ( p=2) we establish a

sharpened bound for the error at each iteration via Chebyshev polynomials in
- A. We discuss the implications of the quickly accumulating effect of an error
in - A b

�
in the initial stage, and find an error bound even in the presence of

such accumulating errors. Although this accumulation of errors may limit the
usefulness of this method when - A b

�
is unknown, it may still be successfully

applied to a variety of small, ``almost-SPD'' problems, and can be used to jump-
start the conjugate gradient method. Finally, we verify these theoretical results
with numerical tests.

KEY WORDS: Modified conjugate gradient method; conjugate gradient
method; Krylov space; convergence rate; stability.

1. INTRODUCTION

The modified conjugate gradient (MCG) method is based on the standard
conjugate gradient (CG) method, which solves Ax

�
=b

�
(where A # Rn_n is

symmetric positive definite) iteratively. At the k th iteration of CG, the
solution x

� k comes from the Krylov space

V k=Kk
A, b

�
:=span[b

�
, Ab

�
, A2b

�
,..., Ak&1b

�
]
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In exact arithmetic, the CG method finds the best fit solution at each itera-
tion [Lanczos (1952)]. That is, at the kth iteration, x

� k # V k satisfies

&x
�
&x

� k &A�&x
�
&v

�
&A \v

�
# V k (1.1)

where the A-norm is given by &w
�
&A=(w

�
TAw

�
)1�2. As a result of this best fit

property and the polynomial form of the Krylov space, the error can be
bounded as [Birkhoff and Lynch (1984); Golub and Van Loan (1989)]:

&x
�
&x

� k &A

&x
�
&x

� 0&A
�2 \- }A &1

- }A +1+
k

(1.2)

where }A is the condition number (the ratio of the largest eigenvalue to the
smallest eigenvalue) of the matrix A. To improve upon the convergence
rate, we must either change the condition number of the matrix A by pre-
conditioning, or change the approximation space.

In Gottlieb and Fischer (1998) we presented a MCG method, which
uses a finite-term recurrence and one multiplication by the matrix A per
iteration to find the best-fit solution in the alternative approximation space,
x
� k # Kk

- A, b
�
=span[b

�
, - A b

�
, (- A)2 b

�
,..., (- A)k&1 b

�
]. This approximation

space suggests an (optimal) error bound

&x
�
&x

� k &A

&x
�
&x

� 0&A
�2 \- }M &1

- }M +1+
k

(1.3)

which is based on }M , the condition number of M=- A. This error bound
would be a significant improvement, since }M=- }A . With the usual
initial guess x

� 0=0, we previously obtained the error bound

&x
�
&x

� k &A

&x
�
&A

�2(k}M+1) \- }M &1

- }M +1+
k

(1.4)

which is the optimal error bound multiplied by a factor which depends
linearly on the condition number and the iterate. In this work, we sharpen
the previous error bound to

&x
�
&x

� k &A

&x
�
&A

�2(2k+1) \- }M &1

- }M +1+
k

(1.5)

which is a significant improvement, as the multiplicative factor now
depends linearly only on the iterate, and there is no additional condition
number dependence.
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The idea is generalizable to the case where a series of vectors [b
�
, A1�pb

�
,

A2�pb
�
,..., A( p&1)�pb

�
] are known initially. In that case, at each iteration the

modified method finds the best fit in the Krylov space V k=Kk
A, b

�
:=

span[b
�
, A1�pb

�
, A2�pb

�
,..., A(k&1)�pb

�
]. This is achieved with a finite term

recurrence and only one matrix-vector multiplication per iteration. This
approach will also be used to study the non-iterative approximation based
on this series of vectors.

In theory, the MCG method could always be used instead of the CG
method. In practice, however, the need for A1�pb

�
limits the use of this

method. However, if A1�pb
�

can be approximated well and few iterations are
needed, MCG may yield the optimal results. We will show analytically and
numerically, (for p=2), that the error in this initial approximation builds
up at each iteration and adversely affects the convergence rate. At worst,
the method still converges as 1�p the rate of CG (i.e., every p th iteration
is a CG iteration). This suggests that even where the MCG method is not
the optimal choice, it may be useful for a few iterations, to lower the
residual before switching to the CG method.

2. THE MODIFIED CONJUGATE GRADIENT METHOD AND
THE EFFECT OF ERROR IN - A

We begin with a brief review of the construction of the MCG method
detailed in Gottlieb and Fischer (1998). We define x

� k # V k to be the solu-
tion vector at the k th iteration. Now let e

� k=x
�
&x

� k be the error at the k th
iteration, and let r

� k=A(x
�
&x

� k) be the residual at the k th iteration. Usually
we set x

� 0=0 and so r
� 0=b

�
. Each x

� k is computed by

x
� k=x

� k&1+:k p
�

k (2.1)

For x
� k to be the best fit solution in V k we require

:k=
p
�

T
k b

�
p
�

T
k Ap

�
k

=
p
�

T
k r

� k&1

p
�

T
k Ap

�
k

(2.2)

where p
�

k # V k and [ p
�

j ] form an A-orthogonal set (i.e., p
�

T
j Ap

�
m=0 for

j{m). To find such a set, p
�

k is chosen by picking a seed vector v
� k # V k and

using Gram�Schmidt orthogonalization with respect to [ p
�

j ]k&1
1 .

p
�

k=v
� k+ :

k&1

j=1

; j p
�

j (2.3)
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where

;j=&
p
�

T
j Av

� k

p
�

T
j Ap

�
j

(2.4)

The proposed square-root MCG (based on - A and b) is obtained by
taking the following sequence of seed vectors

v
� 1=r

� 0 (2.5)

v
� 2=- A r

� 0 (2.6)

v
� k=r

� k&2 , for k>2 (2.7)

which span the Krylov space K- A, b
�
, and reduce (2.3) to the finite term

recurrence

p
�

k=v
� k+;k&3 p

�
k&3+;k&2 p

�
k&2+;k&1 p

�
k&1 (2.8)

What is remarkable about this method is that it has essentially the same
complexity as CG (in terms of matrix-vector products), and achieves a
superior convergence rate by choosing a candidate search direction that is
not the steepest descent, that is, by choosing r

� k&2 rather than the current
residual r

� k&1 .
If a sequence of vectors [An�pb

�
] p&1

n=0 is known, the choice of seed
vectors

v
� j =A( j&1)�pb

�
, for j=1,..., p

v
� k=r

� k& p , for k>p

will yield the Krylov space Kk
A1�p, b

�
, and a finite term recurrence

p
�

k=v
� k+ :

2p&1

j=1

;k& j p
�

k& j (2.9)

We expect this method to have an error bound which depends upon

\- (}A)1�p&1

- (}A)1�p+1+
k

(2.10)

This approach also suggests an error bound for a non-iterative approxima-
tion to the solution of Ax

�
=b

�
. Given a sequence of vectors [An�pb

�
] p&1

n=0 , we
can build the best-fit polynomial using the MCG procedure. This approxi-
mation will have an error bound asymptotically equal to (2.10) with
k= p&1.

444 Fischer and Gottlieb



The previous discussion assumed that we can readily find - A b
�
, or

that some sequence of roots [An�p] p&1
n=1 is known. Unfortunately, this is not

always the case, and these quantities must usually be approximated. We
now turn our attention to the case where - A b

�
is approximated by Qb

�
,

with some error E=Q&- A. The approximation space from which the
(best-fit) k th iterate is taken is now V k=span[[b

�
, Ab

�
, A2b

�
,..., A[(k&1)�2]b

�
]

_ [Qb
�
, AQb

�
, A2Qb

�
,..., A[(k&2)�2]Qb

�
]], where [n] denotes the integer part

of n. The k th iterate may be written as:

x
� k= :

[(k&1)�2]

j=0

cjA jb
�
+ :

[(k&2)�2]

j=0

djA jQb
�

=Pk&1(- A) b
�
+P� [(k&2)�2](A) Eb

�

Clearly, if the error E=0, then the first polynomial Pk&1(- A) b
�

is the
MCG best fit polynomial. The second polynomial P� (k&1)�2&1(A) can be
understood as amplifying the error E introduced by approximating - A b

�
,

and it is the odd part of the first polynomial. For the class of functions
traditionally used to bound CG-type methods, we observe that the odd
parts of such polynomials grow quickly with the order of the polynomial
(see Fig. 2.1). This implies that the error introduced by approximating
- A b

�
will grow and destroy the convergence rate. However, this error will

not grow without bound, since if we consider an even polynomial Pk&1(- A),
the polynomial multiplying E would be zero. This approach is equivalent
to the best fit even polynomial in the krylov space of CG so that even with
a large error in approximating - A b

�
, the MCG method would converge at

half the rate of CG, or equivalent to CG at every second iteration. This is
an interesting guarantee on the convergence of MCG regardless of the
initial approximation error. This error analysis suggests that MCG is useful
where E very small and few iterations are needed, such as in the case of a
matrix with few eigenvalues or where few iterations are used to reduce the
residual before starting the CG method, or when the CG method stalls.

This approach is applicable to linear systems BTBx
�
=b

�
for which B is

not symmetric, but is close enough to symmetric so that the simple (and
cheap to compute) approximation - BTBr

1
2 (B+BT ) is highly accurate.

For such systems, E is small, and if the number of iterations needed is
small, the initial error will not have a chance to grow and diminish the
convergence rate. Such cases will be discussed in the numerical section. In
Gottlieb and Fischer (1998) we observed instability in the MCG method,
even in the absence of an approximation to - A b

�
. This behavior was

apparent more quickly in codes run with 32-bit precision, and diminished
in 64-bit precision and 128-bit precision. We suggest that this instability
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Fig. 2.1. The odd part of the polynomial Qk+1(x) used in the error analysis. This poly-
nomial grows with its order, which implies that the error Eb

�
in the initial approximation of

- A b
�

will be amplified at each iteration.

can be explained as the result of machine-accuracy error in - A b
�
, and can

be resolved only by using higher precision. This idea is validated by the fact
that a series of numerical experiments in which E exists and is diminishing
exhibits similar behavior. This behavior leads to a new view on precondi-
tioning. A class of preconditioners which reduce the size of the relative
error in - A b

�
would help speed convergence. Traditional preconditioning

aims to reduce the condition number of the iteration matrix. This new type
of preconditioning would focus on making the approximation to - A more
accurate. Specifically, for the case A=BTB discussed above, a precondi-
tioner would make the matrix B more symmetric in some sense.

3. A SHARPER ERROR BOUND FOR THE MODIFIED METHOD

Given initial vectors [b
�
, - A b

�
] the square-root MCG method finds

the best fit in a readily computed approximation space, at a fixed cost per
iteration. The ``best fit'' property implies that, in exact arithmetic, strict
error bounds can be computed for the k th iterate, independent of the
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particular algorithm used to compute x
� k . In this section we derive a

sharper bound for the case where the approximation space is taken as the
Krylov space Kk

M, b
�

associated with the symmetric positive definite (SPD)
matrix M :=- A.

The best-fit property implies that the k th iterate, x
� k # Kk

M, b
�
, is to

satisfy (1.1):

&x
�
&x

� k&A�&x
�
&v

�
&A \v

�
# Kk

M, b
�

�&x
�
&Pk&1(M ) b

�
&A \Pk&1(x) # Pk&1(x) (3.1)

where Pk&1 is the space of all polynomials of degree k&1 or less in the
argument. Defining r

� k=b
�
&Ax

� k=A(x
�
&x

� k) as the residual at the k th
iteration, we have &x

�
&x

� k&A=&r
� k

&A&1 . The definition of M and (3.1)
imply

For all Pk&1(M ) # Pk&1(M ):

&x
�
&x

� k&A�&b
�
&M2Pk&1(M ) b

�
&A&1

�&I&M2Pk&1(M )&A&1 &b
�
&A&1

=&I&M2Pk&1(M )&A&1 &x
�
&A (3.2)

where the matrix norm, & }&A&1 , is the natural norm induced by the same
vector norm. If M and A are any two SPD matrices which commute, and
Q(M ) is any polynomial in M, a straightforward calculation reveals that
&Q(M )&A&1=&Q(M )&2=\(Q(M )), where \(Q) is spectral radius of Q.
Consequently, an upper bound on &x

�
&x

� k&A can be derived by choosing
a polynomial Q(M ) :=I&M2Pk&1(M ) which minimizes \(Q). Denoting
the eigenvalues of M by +i , where 0<+1� } } } �+n , we have

\=max
i

|Q(+i )|� max
+1�+�+n

|Q(+)| (3.3)

While the choice of Pk&1 is arbitrary up to the maximal degree, k&1,
the choice of Q(x) is more restricted. Let P1, 0

k+1 be the subset of Pk+1

defined by

P1, 0
k+1=[q : q(0)=1; q$(0)=0; q # Pk+1] (3.4)

Clearly, Q # P1, 0
k+1 . Combining (3.2) and (3.3), one obtains

&x
�
&x

� k &A

&x
�
&A

� min
Q # P1, 0

k+1

max
+1�+�+n

|Q(+)| (3.5)
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The class of polynomials defined by (3.4) has been studied extensively by
B. Fischer under the heading of Hermite kernel polynomials. Although
(3.5) is not addressed directly, it is noted in B. Fischer (1996) that polyno-
mials in P1, 0

k+1 can be expressed as a linear combination of the same trans-
lated and scaled Chebyshev polynomials T� k (defined below) that were used
to derive (1.2). Although not the unique minimizer, the bound resulting
from such a combination will be very close to optimal, as we now show.

We denote by T� k the translated and scaled Chebyshev polynomial

T� k(x) :=
Tk \+n++1&2x

+n&+1 +
Tk \+n++1

+n&+1+
(3.6)

where Tk(x) is the Chebyshev polynomial [e.g., Saad (1996)],

Tk(x)= 1
2 ((x+- x2&1)k+(x&- x2&1)k), |x|�1 (3.7)

T� k satisfies the classic minimax problem on [+1 , +n]:

mk := max
+1�+�+n

|T� k(+)|= min
q # P

1
k+1

max
+1�+�+n

|q(+)| (3.8)

where P1
k+1 is the set of polynomials defined by

P1
k+1=[q : q(0)=1; q # Pk+1] (3.9)

Defining _ :=(+n++1)�(+n&+1), note that

mk=
1

Tk(_)
(3.10)

Consider the polynomial Qk+1(x)=:T� k+1(x)+;T� k(x). Since both
T� k+1(x) and T� k(x) have the minimum possible extrema on [+1 , +n], this
is clearly a reasonable starting point for solving the minimax problem (3.5).
In order to satisfy the interpolatory constraints for Qk+1 # P1, 0

k+1 , we must
have

:+;=1

:T� $k+1(0)+;T� $k(0)=0
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Solving for : and ; yields

Qk+1(x)=
T� $k+1(0) T� k(x)&T� $k(0) T� k+1(x)

T� $k+1(0)&T� $k(0)

Note that T� $k(0) and T� $k+1(0) are of the same sign, whereas T� k+1(+n) and
T� k(+n) are of opposite sign. Thus, we have

max
+1�+�+n

|Qk+1(+)|=
T� $k(0) mk+1+T� $k+1(0) mk

T� $k+1(0)&T� $k(0)

Using (3.6) and (3.10), one obtains the bound

max
+1�+�+n

|Qk+1(+)|=
T $k+1+T $k

TkT $k+1&Tk+1T $k
(3.11)

where the argument of the Chebyshev polynomials and their derivatives is
taken to be _.

To compare this bound to the original CG result (1.2), we recast
(3.11) in terms of }M :=+n�+1 , the condition number of M. Defining
a :=_+- _2&1 and b :=_&- _2&1, we note the following identities:

a=
- }M +1

- }M &1

a } b=1

a>b>0 (3.12)

Tk(_)=
1
2

(ak+bk)

T $k(_)=
k

a&b
(ak&bk)

The denominator of (3.11) is then:

Tk+1T $k&Tk T $k+1

= } k+1
2(a&b)

(ak+bk)(ak+1&bk+1)&
k

2(a&b)
(ak+1+bk+1)(ak&bk) }

=k+
1
2

+
a2k+1&b2k+1

2(a&b)
(3.13)
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while the numerator becomes

T $k+T $k+1=
k

2(a&b)
(ak&bk)+

k+1
2(a&b)

(ak+1&bk+1) (3.14)

Combining (3.13) and (3.14) yields

max
+1�+�+n

|Qk+1(+)|=
k(ak&bk)+(k+1)(ak+1&bk+1)
(a&b)(k+ 1

2)+ 1
2 (a2k+1&b2k+1)

�
k(ak&bk)+(k+1)(ak+1&bk+1)

1
2 (a2k+1&b2k+1)

=
2k(ak&bk)

(a2k+1&b2k+1)
+

2(k+1)(ak+1&bk+1)
(a2k+1&b2k+1)

=
2k(ak&bk)

ak+1ak&ak+1bk+(ak+1bk&bk+1bk)

+
2(k+1)(ak+1&bk+1)

akak+1&akbk+1+(akbk+1&bkbk+1)

�
2k(ak&bk)

ak+1ak&ak+1bk+
2(k+1)(ak+1&bk+1)

akak+1&akbk+1

=
2k

ak+1+
2(k+1)

ak

�
2(2k+1)

ak (3.15)

Taking (3.15) in conjunction with the first of the identities (3.12), we
obtain the desired result

&x
�
&x

� k &A

&x
�
&A

�2(2k+1) \- }M &1

- }M +1+
k

(3.16)

Although this bound has an extra factor of (2k+1) not present in (1.2),
the fact that it is based upon }M=- }A implies that the modified approach
should yield a much better convergence rate than the standard CG algo-
rithm. A comparison of this new error bound (3.16), the previous error
bound (1.4), the optimal error bound (1.3) and the CG error bound (1.2)
is shown in Fig. 3.1.
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Fig. 3.1. Comparison of the CG and MCG error bounds. The graph shows the log(error)
as a function of the number of iterations. Clearly, the MCG bounds show the error decaying
at a rate which is a significant improvement over the error decay rate associated with CG.

4. NUMERICAL EXPERIMENTS

Example 1. The MCG and CG methods are applied to the problem
Ax

�
=b

�
where A # R1600_1600 is the two dimensional Laplacian operator

given by second-order finite differences on a regular array of points:

(Av) i, j=4vi, j&vi+1, j&vi&1, j&vi, j+1&vi, j&1

with corresponding Dirichlet boundary conditions. The right hand side b
�

is
given by

bj=100 sin(100 cos( j))

In this case, the square-root of the matrix A is unknown, but is approxi-
mated to a high degree of accuracy, using a method developed by van der
Vorst (1987). The performance of the MCG method is compared to that of
the standard CG. The initial behavior of MCG is exactly as predicted
(Fig. 4.1, right), following along the error-bound almost exactly.
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Fig. 4.1. This is a comparison of the performance of MCG and CG for Example 1, and the
theoretical error bounds of MCG and CG. the initial convergence of MCG matches perfectly
with the optimal error bound initially (right). MCG initially decays as predicted by the error
bound and outperforms CG, but later (left) the error associated with the approximation of
- A b

�
grows and causes convergence to slow down. near 100 iterations MCG begins to

converge at half the rate of CG, however, at no point does the error decay at twice the rate
of the CG error bound.

Example 2. MCG and CG are applied to a series of problems of the
form

BTBx
�
=b

�

where B are 150_150 matrices of the form:

2.5 &1+= 0 0 0 } } } 0
&1 2.5 &1+= 0 0 } } } 0

0 &1 2.5 &1+= 0 } } } 0
B=\ } } } } } } } +} } } } } } }

0 0 0 0 &1 2.5 &1+=
0 0 0 0 0 &1 2.5

and =, depending on the case, takes values 10&8�=�10&2. In all cases,
b
�

is given by bj=sin(100 cos(100 j)). The square-root initial vector - A b
�

is
approximated by

- BTB b
�
r

BT+B
2

b
�
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Fig. 4.2. CG and the square-root MCG were applied as in Example 2, for a few different
values of =. CG behaved almost exactly the same regardless of the value of =, so one repre-
sentative case is shown. The behavior of MCG differed widely depending on the value of =.
When ==10&2, the error buildup diminished the convergence rate after very few iterations. At
the level of ==10&6 and ==10&7, the initial convergence of MCG is a significant improve-
ment for the first 60 or so iterations, at which point there is a crossover, and CG is better than
MCG. However, for ==10&8 MCG is a significant improvement over CG.

Figure 4.2 shows the effect of the error in the square-root by varying =.
When = is small, this approximation is almost exact, and the error-vector E
is small. When = grows, E grows correspondingly. To limit the effect of
round-off error, the MCG codes were run in 128-bit precision. The effect is
remarkably as we expect. The MCG method converges significantly faster
than CG when = is very small. As = grows, we see the MCG method exhibit-
ing slowed convergence at an earlier iteration number. This diminished
convergence causes MCG to converge slower than CG in the cases where
=�10&7.

Example 3. The cube-root MCG, square-root MCG and CG were
used to solve Ax

�
=b

�
where A is a 900_900 diagonal matrix
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*1 0 0 0 } } } 0

0 *2 0 0 } } } 0

A=\ } } } } } } +} } } } } }

0 0 0 0 0 *900

with *i given by

(a)

*1=0.034, *2=0.082, *3=0.127, *4=0.155, *5=0.19

*i=0.2+
i&5
895

i=6, 900

(b)

*1=214.827, *2=57.4368, *3=48.5554, *4=35.0624

*5=27.3633, *6=21.8722 *7=17.7489

*i=1.0+15.6624
i&8
892

i=8, 900

Figure 4.3 compares the standard CG method, the square-root MCG and
the cube-root MCG. The performance is as predicted, with the cube-root
method converging fastest, the square-root MCG next and the standard
method last. Although this was an idealized case, in which the matrix was
a diagonal matrix and the square- and cube-roots were calculated directly,
and the MCG codes were run with 128-bit precision, both MCG methods
eventually suffer from instability after the error was below 10&11. This did
not seem to affect convergence, but if 128-bit precision was not used, the
effect of round-off error would be seen much sooner. These two cases show
that the ideal behavior of MCG is indeed as predicted.

5. CONCLUSIONS

We generalize the MCG method to cases where we have a available a
sequence of vectors [b

�
, A1�pb

�
, A2�pb

�
,..., A( p&1)�pb

�
], and discuss the approxi-

mation properties of such a method, as well as that of the non-iterative
approximation based on this sequence. A sharpened bound is obtained for
the square-root case, as well as an analysis of the effect of an error in the
initial approximation of - A b

�
. We suspect that this effect may be a cause
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Fig. 4.3. The cube-root and square-root MCG methods are compared to CG for the two
van der Vorst matrices (a) and (b) in Example 3, respectively. The MCG methods initially
exceed the optimal bound, but later converge faster, verifying the claim that the bound will
have some iteration-related term multiplied to the optima-bound term we're using. The
diminished convergence; which we explain as the effect of round-off level error in the - A is
not visible, as it occurs after the residual was cut to below 10&11, but it does occur a little
later.

of instability in the MCG method, and suggest that a new approach to pre-
conditioning may resolve this problem. This method is still applicable to
cases in which we are solving BTBx

�
=b

�
where B is close to symmetric, and

the number of iterations needed is small. In the numerical experiments, we
verify that the initial convergence rate of the square-root ( p=2) and cube-
root ( p=3) MCG is a significant improvement over CG, converging at a
rate which depends upon with the pth-root of the condition number. We
also observe, as predicted, the accumulating effect of an error in - A at the
initial stage, and at worst, equivalence of the convergence rate of MCG to
CG at every second iteration.
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