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Abstract: Weighted essentially non-oscillatory (WENO) schemes have proved
useful in a variety of physical applications. They capture sharp gradients with-
out smearing, and feature high order of accuracy along with nonlinear stability.
The high order of accuracy, robustness, and smooth numerical uxes of the
WENO schemes make them ideal for use with Jacobian based iterative solvers,
to directly simulate the steady state solution of conservation laws. In this paper,
we consider a Newton based implicit WENO solver for scalar conservation laws.
A unique interpolation technique is developed, which produces a more eÆcient
iteration. Numerical results are presented.
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1 Introduction

Weighted essentially non-oscillatory (WENO) schemes [7] are high order �nite-
di�erence methods with an adaptive-stencil approach. At each point in space,
they approximate the derivative with a high order di�erence formula selected to
prevent oscillations. WENOmethods capture sharp gradients without smearing,
and do not allow oscillations to appear and thus preserve the correct physical
behavior by upwinding and stencil choosing. WENO schemes have proven use-
ful in resolving the numerical solution of conservation laws with shocks [8], [7],
and are useful whenever sharp gradients are present, to prevent non-physical
oscillations from appearing, propagating, and ultimately destroying the reliabil-
ity of the numerical method. WENO schemes are distinguished by high order
of accuracy, robustness, and smooth numerical uxes. These features make it
possible to use WENO in conjunction with Jacobian based iterative solvers to
eÆciently solve steady state problems directly.
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2 The WENO Method in the Context of Earlier

Methods

To approximate, in a physically correct way, [3] the solution to a conservation
law of the form

ut + f(u)x = 0;

we use a conservative �nite di�erence scheme

ut = �
1

�x
(f̂j+ 1

2
� f̂j� 1

2
):

The term f̂j+ 1
2
= f̂(uj�k; :::; uj+l) is the numerical ux, and the points uj�k; :::; uj+l

constitute the stencil. To be a reasonable approximation, the numerical ux
must be (at least) Lipschitz continuous and consistent with the physical ux f ,

i.e. f̂(u; :::; u) = f(u). The numerical ux determines the numerical method
and its properties. Any di�erences between conservative numerical methods are
a result of di�erences in the numerical ux.

The numerical ux determines the order of accuracy of the method, as well
as the stability properties. On the left of the shock and the right of the shock
we have smooth regions, and in those regions linear stability is enough to ensure
nonlinear stability. Instability occurs when points on opposite sides of the shock
are used to evaluate the derivative at a given point. This causes oscillations
at the shock location, which propagate to the smooth regions, destroying the
stability of the solution. The idea behind essentially non-oscillatory (ENO)
schemes is stencil switching in order to eliminate oscillations [5], [6]. ENO
schemes search for the locally smoothest stencil and use that stencil to calculate
the numerical uxes. This assures that the shock is not crossed.

Liu, Osher and Chan [7] improved upon the ENO schemes by using all candi-
date stencils instead of using only the smoothest candidate stencil. Each stencil
is assigned a weight, which depends on its smoothness. Then all approximations
from all the candidate stencils are added up, each with the weight assigned to
it.The weights are chosen so that in smooth regions we obtain higher order ac-
curacy whereas near discontinuities the ENO scheme is imitated by assigning
near-zero weights to the stencils that contain discontinuities. To get an rth
order ENO scheme, a total of 2r � 1 points are examined. Since the WENO
scheme uses all the candidate stencils, a clever choice of weights [8] results in a
WENO scheme which is of order 2r � 1 in smooth regions.

WENO schemes take each candidate stencil

Sk = (f+(uj�r+1+k); ::; f
+(uj+k))

and assign it a smoothness measurement,

ISk =
r�1X
l=1

Z x
j+1

2

x
j� 1

2

�x2l�1(q
(l)
k (x))2dx;
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where q
(l)
k (x) are the lth derivatives of the interpolation polynomial associated

with the stencil Sk. For each stencil, a weight !k (based on the smoothness
measurement) is assigned. These weights sum to one and approach the ENO
weights in nonsmooth regions. The numerical ux is then de�ned as:

f̂j+ 1
2

=

r�1X
k=0

!kq
r
k(Sk)

and the resulting method is of order 2r � 1 in smooth regions, and rth order
near the shock.

3 Convergence to Steady State of WENO using

a Newton iteration

A classical problem with ENO schemes, which is due to the stencil switching in
ENO, is that their numerical ux is only Lipschitz continuous but not smoother.
This lack of smoothness causes problems in steady state calculations, in that
the residual never settles down to machine zero but hangs at the truncation
error level, usually within 10�3 to 10�5. WENO schemes, on the other hand,
can settle down to machine zero residual while still maintaining a sharp, non-
oscillatory steady state shock resolution together with uniformly high order
accuracy in the smooth part of the solution. The smoothness of the numerical
ux of WENO also facilitates the usage of Jacobian based iterative solvers for
steady states, such as Newton and damped Newton methods.

The time dependent problem

ut + f(u)x = g(u; x)

becomes, at steady state

f(u)x = g(u; x) (1)

This equation can be solved directly using an iterative solver such as Newton's
method for nonlinear systems, rather than solving the time dependent problem
until steady state is reached. This method will converge if the starting values
are suÆciently close to the real solution.

Since the f(u)x term is approximated using Weighted ENO, for which the
numerical uxes are smooth, there is no trouble in calculating the Jacobian
matrix needed for the Newton's iteration. The Jacobian matrix is a sparse
matrix, and this can be used to reduce the cost of the iteration. The choice of
initial guess is the key to quick convergence. In the next section, we show how
well this method works, and we explore a interpolation technique for generating
a good initial guess.
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4 Numerical Examples

Example 1: To validate this method we choose a test problem which features
a steady shock as the viscosity vanishes. The boundary value steady state
problem:

Æu
00

� (
1

2
u2)

0

� u = 0 0 � x � 1

u(0) =
3

4
u(1) = �

1

2
:

has exact solution is:

u(x) =

�
0:75� x if 0 � x < 0:625
�x+ 0:5 if 0:625 < x � 1

The computations are performed with Æ = 10�6, and initial guess u(x) = 3
4 �

5
4x. The direct problem was computed using a Newton iteration for which
the convergence criteria was 10�15 (machine precision). For comparison, the
associated time-dependent problem was run to steady state explicitly with a
Runge-Kutta timestepping method. For each simulation (Newton and RK) two
sets of numerical experiments were carried out. In the �rst set of experiments,
the method is applied in a straightforward manner, using a linear initial guess,
to the full mesh. In the second set of experiments, the approximation to the
solution is computed in the straightforward way with linear initial guess on
a coarse mesh of 20 gridpoints. This numerical solution is then interpolated
onto 40 gridpoints, and used as the initial guess for the numerical solution at
40 gridpoints. This process is repeated, to produce an initial guess for the
numerical simulation on the full mesh. As seen in Table 1, the interpolation
technique results in an overall more eÆcient scheme when compared to the
numerical simulation on the full mesh starting from standard initial data. Note
that the CPU time reported for the interpolated experiments includes not merely
the solution on the �ne grid from the interpolated initial guess, but the entire
interpolation cascade and solution on the �ne mesh. Furthermore, it reects the
fact that a full matrix solver was used, for inverting the Jacobian in the Newton
iteration, instead of an eÆcient sparse solver.
Example 2: The second test problem is the Embid-Majda problem [4] which
has two solutions, one with a standing shock which is stable in time, and one
with an unstable standing shock. The WENO method accurately captures the
shock behavior, but the solver strategy has a major impact on the solution.
The time-stepping RK method converges only to the stable shock. When the
Newton iteration is used to solve the steady-state problem directly, the shock
captured depends on the initial condition. e.g. when the initial guess is a step
function with shock location close enough to the stable shock location x1 = 0:18,
the iteration converges to the stable shock location. However, when the initial
guess is a step functions with shock location close enough to the unstable shock
location x2 = 0:82, the iteration converges to the unstable shock location. The
Embid{Majda problem is:
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(
1

2
u2)x = a(x)u 0 � x � 1

a(x) = 6x� 3:

u(0) = 1 u(1) = �0:1

Which has the steady exact solution:

u(x) =

�
3x2 � 3x+ 1 if 0 � x < 0:18
3x2 � 3x� 0:1 if 0:18 < x � 1

Once again, a Newton iteration and Runge Kutta time-stepping method are
used, with the following cases as initial conditions:

1.

u(x) =

�
1 if 0 � x < 0:18
�0:1 if 0:18 < x � 1

2.

u(x) =

�
1 if 0 � x < 0:38
�0:1 if 0:38 < x � 1

In general, the time-stepping method took a shorter time to converge, even
though more iterations were needed (Table 2). As with the �rst example we
conjecture that this is due in part to the ineÆcient matrix solver used in the
Newton direct method. Similar to the results presented in Example 1, we ob-
serve that the interpolation technique is more eÆcient for the Newton iteration,
but not for the RK timestepping.

5 Conclusions

There are many problems for which the physical phenomena exhibit sharp gra-
dients and thus require stable high order methods that insure that there are no
spurious oscillations. It is clear that WENO is ideally suited to such problems.
For steady state simulations, we would like to avoid the use of time-stepping,
and solve the problem directly. This approach implies an implicit WENO. We
present an implicit WENO which employs a Jacobian-based Newton iterative
solver. Furthermore, the interpolation procedure presented here { a cascade of
approximate solutions on �ner and �ner grids serving as the initial guess of the
next �nest grid { clearly increases the speed of convergence. Based on these
results it is expected that implicit WENO with the interpolation procedures
should be considered for larger problems up to an including systems.
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Comparison of Steady State Calculation by Newton’s Method and Runge-Kutta
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Figure 1: Convergence to steady state of example 1. A comparison of the di-

rect solution using Newton's method and the explicit Runge-Kutta timestepping.
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Newton Iteration
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Figure 2: Newton's method applied to Embid-Majda. Left: with initial guess

shock location xshock = 38, convergence to the unstable shock location. Right:

Convergence to the stable shock solution
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Table 1: Comparison of Newton's method and Runge-Kutta time

stepping

n Runge-Kutta Newton Interp. RK Interp. Newton

CPU Iter CPU Iter CPU Iter CPU Iter
160 13.0 2851 113.0 73 29.0 8943 16.0 35
320 249.0 29152 3029.0 277 108.0 17368 113.0 47
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Table 2: Comparison of the number of iterations used by New-

ton and Runge-Kutta, and the CPU time used for the Embid-Majda

problem.

n Runge-Kutta Interp. RK Newton Interp. Newton i.c.
CPU Iter CPU Iter CPU Iter CPU Iter

160 24.0 5858 30.0 9774 27.0 18 26.0 54 1
320 98.0 11869 113.0 19903 650.0 60 155.0 70 1
40 2.0 1481 2.0 1287 31.0 81 | | 2
80 6.0 2969 8.0 2549 246.0 919 20.0 342 2
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