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1 Introduction

Fourier spectral methods have emerged as powerful computational techniques for the simulation of
complex smooth physical phenomena. Their exponential convergence rate depends on the smoothness
and periodicity of the function in the domain of interest. If the function has a discontinuity at even
one point, the convergence rate deteriorates to first order and spurious oscillations develop near
the discontinuities. This behavior is called the Gibbs phenomenon. The problems that characterize
the Gibbs phenomenon are also inherent in Fourier spectral methods applied to partial differential
equations with discontinuous solutions. Hence our goal is to present techniques that can significantly
reduce the effects of the Gibbs phenomenon to ensure both high order convergence of the Fourier
expansion and numerical stability and accuracy of the Fourier spectral method.

In the last few decades, techniques have been developed to mitigate or even completely remove the
Gibbs phenomenon in Fourier expansions of discontinuous functions, and there is increasing evidence
that some of these methods enable the use of spectral methods for partial differential equations with
discontinuous solutions, [1, 10, 11, 12, 13, 14, 36, 40, 41, 42, 43]. This chapter provides an overview of
several recent developments in both reducing and overcoming the effects of the Gibbs phenomenon in
Fourier expansions, [15, 25, 26, 29, 27, 28, 30, 31, 24, 38]. As a result, it is now possible to use Fourier
spectral methods for simulating conservation laws with discontinuous solutions (see references above
and [21, 37]). While our focus is on the applications of these techniques to Fourier spectral methods,
many of the algorithms presented can also be applied to polynomial spectral methods. The purpose
of this chapter is to offer a theoretical introduction, and we strongly encourage the reader to view
the above citations for applications and other new developments in this area.

Filtering is a classical tool for mitigating the effect of the Gibbs phenomenon in Fourier expan-
sions. In Section 2 we discuss the use of filters in Fourier expansions of discontinuous functions.
However, filtering does not completely remove the Gibbs phenomenon. To completely remove the
Gibbs phenomenon, one can re-expand the function in a carefully chosen different basis. In Section
3 we describe the spectral reprojection method, which was introduced in [25] and further analyzed
in [26, 29, 27, 28, 30, 31]. These two tools have been found to be useful in spectral methods for
hyperbolic PDEs; filtering is used to stabilize the method [32, 34], and post-processing to recover
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high order of accuracy in smooth regions, [17, 21, 39]. However, to apply the spectral reprojection
method in the smooth regions, we require prior identification of the locations of the jump discontinu-
ities. Hence in Section 4 we present an edge detection algorithm based on Fourier spectral data. The
method can also be used for uniformly spaced grid point data. Section 5 provides theoretical and
numerical arguments for the use of spectral methods for solving partial differential equations with
discontinuous solutions. Finally, the techniques of filtering, edge detection, and spectral reprojection
are combined to produce numerical results in the Section 6.

2 Filters

One of the manifestations of the Gibbs phenomenon is that the expansion coefficients decay slowly.
This is due to the global nature of the approximation: the expansion coefficients are obtained by
integration or summation over the entire domain, including the points of discontinuity. The idea of
filtering is to alter the expansion coefficients so that they decay faster. While this will not impact
the non-uniform convergence near the shock, a well chosen filter will improve the convergence rate
away from the discontinuity.

A filter of order q is a real and even function σ(η) ∈ Cq−1[−∞,∞] with the following properties:

1.

σ(η) = 0 for |η| > 1.

2.

σ(0) = 1 and σ(1) = 0.

3.

σ(m)(0) = σ(m)(1) = 0 ∀m ∈ [1, . . . , q − 1].

A filtered truncated continuous polynomial approximation is

fσ
N (x) =

N∑

k=−N

σ(
|k|
N

)f̂kφk(x), (2.1)

where f̂k are the expansion coefficients and σ( |k|N ) is the filter. Note that the filter is a continuous
function which only effects the high modes. The fact that the filter is a continuous function is
important – cutting off the high modes abruptly (e.g. a step function filter) does not enhance the
convergence rate even in smooth regions [25, 44]. Some examples of filters include:

• the second order Raised Cosine Filter

σ(η) =
1

2
(1 + cos (πη)) , (2.2)

• the second order Lanczos filter

σ(η) =
sinπη

πη
, (2.3)
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• and the family of exponential filters

σ(η) =

{
1 |η| ≤ ηc

e
(
−α

(
η−ηc
1−ηc

)p)
η > ηc

, (2.4)

where α measures the strength of the filter and p is its order.

Note that the exponential filter does not quite conform with the definition of a filter above because
σ(1) = e−α, so α is chosen so that σ(1) ≃ O(εM ) where εM is the machine accuracy, resulting in
the complete removal of the ±N

2 modes. The exponential filter allows the recovery of convergence of
any desired order p at any fixed point away from the discontinuity, making it a popular choice when
performing simulations of non-linear partial differential equations.

Assume we are given the first (2N + 1) Fourier expansion coefficients

f̂k =
1

2π

∫ π

−π
f(x)e−ikxdx (2.5)

of a piecewise analytic function f(x) on [−π, π], and that the function has a single discontinuity at
x = ξ. The Fourier partial sum approximation,

fN (x) =
∑

|k|≤N

f̂ke
ikx, (2.6)

yields the Gibbs phenomenon – first order convergence away from the jump discontinuity x = ξ with
nonuniform oscillations as the jump discontinuity is approached.

To improve the convergence rate of (2.6), we use the filter σ( |k|N ), leading to the modified approx-
imation

fσ
N (x) =

∑

|k|≤N

σ(
|k|
N

)f̂ke
ikx.

Since σ(η) = 0 for η = |k|
N ≥ 1, we have

fσ
N (x) =

∑

|k|<∞
σ(

|k|
N

)f̂ke
ikx.

Finally, rearranging terms yields

fσ
N (x) =

1

2π

∫ 1

−1
S(x− y)f(y). (2.7)

where the filter function is given by

S(z) =
∑

|k|<∞
σ(η)eikz . (2.8)

Since f(x) is a piecewise Cp[−π, π] function with a single point of discontinuity at x = ξ, the pointwise
difference between f(x) and fσ

N (x) at all x 6= ξ is bounded by [25, 44]:

|f(x) − fσ
N (x)| ≤ C1

1

Np−1

1

d(x)p−1
K(u) + C2

√
N

Np

(∫ π

−π

∣∣∣u(p)
∣∣∣
2
dx

)1/2

, (2.9)
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where d(x) = |x− ξ| denotes the distance between a point x ∈ [−π, π] and the discontinuity, and

K(u) =
p−1∑

l=0

d(x)l
∣∣∣u(l)(ξ+) − u(l)(ξ−)

∣∣∣
∫ ∞

−∞

∣∣∣G(p−l)
l (η)

∣∣∣ dη,

with

Gl(η) =
σ(η) − 1

ηl
.

Hence filtering raises the rate of convergence away from the discontinuity (d(x) > 0), as all terms
can be bounded by O(N1−p) depending only on the regularity of the piecewise continuous function
and the order of the filter. In the case where f(x) is piecewise analytic, one can take the order of
the filter p ∝ N to yield exponential accuracy at any fixed point away from the discontinuity. The
extension to multiple points of discontinuity is straightforward.

3 Spectral Reprojection Methods

3.1 Theoretical Aspects of Spectral Reprojection

While filtering may remove the Gibbs phenomenon away from the discontinuity, the accuracy de-
creases with proximity to the discontinuity, (2.9). However, if the underlying function is piecewise
analytic, the Gibbs phenomenon can be completely removed by re-expanding its Fourier partial sum
approximation (2.6) using a different set of basis functions.1 This idea was first presented in [25]
using Gegenbauer polynomials as a reprojection basis for trigonometric polynomials. It was more
recently generalized in [31]. In this section we use the interval [−1, 1] and the summation over the
nonnegative integers. Fourier series expansions can be easily converted into this notation, which
generalizes more easily to orthogonal polynomials.

Assume that f(x) ∈ L2[−1, 1] is analytic on some subinterval [a, b] ⊂ [−1, 1]. Let {Ψk(x)} be
an orthonormal family under some inner product product ( · , · ), and denote the finite continuous
expansion in this basis by

fN (x) =
N∑

k=0

(f,Ψk)Ψk(x). (3.1)

We assume that
|(f,Ψk)| ≤ C (3.2)

for C independent of k, and that

lim
N→∞

(f(x) − fN (x)) = 0 (3.3)

almost everywhere in x ∈ [−1, 1].
The approximation (3.1) may converge slowly if there is a discontinuity outside of the interval

of analyticity [a, b]. This is due to the global nature of the expansion: since the coefficients are
computed over the entire domain [−1, 1], any discontinuity in that domain will contaminate the
expansion – even within the smooth interval [a, b]. However, under certain conditions, fN (x) retains
sufficient information to enable the recovery of a high order approximation to f(x) in the interval
[a, b]. This is accomplished by re-expanding fN (x) in a different, more appropriate basis.

1In fact, the Gibbs phenomenon resulting from any commonly used spectral method (e.g. Chebyshev or Legendre)
can be removed by re-expansion into a different, suitable, set of basis functions. The discussion here is limited to the
case where the original expansion is the Fourier expansion.
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First we define the local variable ξ ∈ [−1, 1] by the transformation

ξ = −1 + 2

(
x− a

b− a

)
(3.4)

such that if a ≤ x ≤ b then −1 ≤ ξ ≤ 1. Now we re-expand fN(x) (an expansion in the basis Ψk),
by an orthonormal family of functions {Φλ

k} defined in an interval of analyticity [a, b],

fλ
m(x) =

m∑

k=0

< fN ,Φ
λ
k >λ Φλ

k (ξ(x)) . (3.5)

For each fixed λ, the family {Φλ
k} is orthonormal under some inner product < · , · >λ.

This new expansion converges exponentially fast in the interval [a, b] if the family {Φλ
k} is Gibbs

Complementary to the family {Ψk(x)}, i.e. if the following three conditions are satisfied:

(a) Orthonormality

< Φλ
k(ξ),Φλ

l (ξ) >λ = δkl (3.6)

for any fixed λ.

(b) Spectral Convergence
The expansion of an function g(ξ) which is analytic in −1 ≤ ξ ≤ 1 (corresponding to a ≤ x ≤ b),
in the basis Φλ

k(ξ) converges exponentially fast with λ = βm, i.e.

max
−1≤ξ≤1

∣∣∣∣∣g(ξ) −
m∑

k=0

< g,Φλ
k >λ Φλ

k(ξ)

∣∣∣∣∣ ≤ e−q1λ, q1 > 0. (3.7)

(c) The Gibbs Condition
There exists a number β < 1 such that if λ = βm then

∣∣∣< Φλ
l (ξ),Ψk(x(ξ)) >λ

∣∣∣ max
−1≤ξ≤1

∣∣∣Φλ
l (ξ)

∣∣∣ ≤
(
αN

k

)λ

k > N, l ≤ λ, α < 1. (3.8)

This means that the projection of the high modes of the basis {Ψk} on the low modes in Φ,
that is Φλ

l (ξ) with small l, is exponentially small in the interval −1 ≤ ξ ≤ 1 for λ proportional
to N .

Hence a slowly converging series,

fN (x) =
N∑

k=0

(f,Ψk)Ψk(x), (3.9)

can still yield a rapidly converging approximation to f(x) if one can determine a reprojection basis
that satisfies the above three conditions.

As an example, assume that the original expansion is the Fourier partial sum (2.6), with

Ψk(x) =
1√
2
eikπx, (3.10)

and k running from −∞ to ∞. The orthonormal Gegenbauer polynomials provide an excellent
example of a Gibbs complementary family. Thus, any Fourier approximation can be re-expanded in
the Gegenbauer basis, and the new approximation known as the Gegenbauer reconstruction method,
converges exponentially, [25, 31]. The method is described below.
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3.2 Implementation of the Gegenbauer Reconstruction Method

Recall that the Gegenbauer partial sum expansion which converges exponentially for a smooth func-
tion f(x) defined in [−1, 1] is given by

fm(x) =
m∑

l=0

f̂λ
l C

λ
l (x), (3.11)

where f̂λ
l are the Gegenbauer coefficients,

f̂λ
l =

1

hλ
l

∫ 1

−1
(1 − x2)λ−

1
2Cλ

l (x)f(x)dx. (3.12)

The Gegenbauer polynomials, Cλ
l (x), are orthogonal under the weight function (1 − x2)λ−

1
2 with

∫ 1

−1
(1 − x2)λ−

1
2Cλ

k (x)Cλ
n(x)dx = δk,nh

λ
k , hλ

k = π
1
2Cλ

n(1)
Γ(λ+ 1

2 )

Γ(λ)(n + λ)
.

Clearly, (3.6) and (3.7) are satisfied.
Now let f(x) be a piecewise smooth L1 function defined in [−1, 1] that is analytic in the sub-

interval [a, b]. The interval of smoothness can be effectively determined by the edge detection pro-
cedure described in Section 4. By defining a local variable ξ such that x(ξ) = ǫξ + δ, where ǫ = b−a

2

and δ = b+a
2 , the Gegenbauer partial sum expansion of f(x) in [a, b] can be written as

fm(x(ξ)) =
m∑

l=0

f̂λ
l,ǫC

λ
l (ξ), −1 ≤ ξ ≤ 1, (3.13)

where the Gegenbauer coefficients f̂λ
l,ǫ are defined by

f̂λ
l,ǫ =

1

hλ
l

∫ 1

−1
(1 − ξ2)λ−

1
2Cλ

l (ξ)f(ǫξ + δ)dξ.

(3.14)

An exponentially accurate approximation to f̂λ
l,ǫ can be constructed as

ĝλ
l,ǫ =

1

hλ
l

∫ 1

−1
(1 − ξ2)λ−

1
2Cλ

l (ξ)fN (ǫξ + δ)dξ, (3.15)

based on the spectral partial sum expansion (3.9), fN (x) = fN (ǫξ+δ), satisfying (3.8). This approx-
imation replaces f̂λ

l,ǫ in the computation of the Gegenbauer partial sum to form the exponentially
convergent approximation

gλ
m(x(ξ)) =

m∑

l=0

ĝλ
l,ǫC

λ
l (ξ), (3.16)

to f(x) in [a, b] in the maximum norm. Of course the Gegenbauer parameters must be suitably
chosen, with λ = βm and m = γN guaranteeing exponential convergence [31].

Consider the case where (3.9) is given by the Fourier (pseudo-)spectral approximation:

fN (ǫξ + δ) =
N∑

k=−N

f̂ke
ikπ(ǫξ+δ),
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where f̂k is either given by a properly normalized (2.5) or by computing

f̂k =
1

2N

2N−1∑

j=0

f(xj)e
−ikπxj

with xj = −1 + j
N , j = 0, · · · , 2N − 1. Then the explicit expression [5]

1

hλ
l

∫ 1

−1
(1 − ξ2)λ−

1
2Cλ

l (ξ)eikπ(ǫξ+δ)dξ = Γ(λ)(
2

πk
)λil(l + λ)Jl+λ(πk),

is exploited to obtain

ĝλ
l,ǫ = δ0,lf̂0 + Γ(λ)il(l + λ)

∑

0<|k|≤N

Jl+λ(πkǫ)(
2

πkǫ
)λf̂ke

ikπδ. (3.17)

This allows use of the efficient FFT algorithm and avoids a more expensive quadrature formulation.
To show the efficacy of the Gegenbauer reconstruction method, we consider the following example:

Example 3.1 f(x) = cos (1.4π(x − 1)), −1 ≤ x ≤ 1.

Figure 3.2 exhibits the results for the Gegenbauer reconstruction method using the parameters
λ = m = 1

4N and λ = m = 2
5N . The results concur with those in [25]. We note that it is possible to

optimize the parameters λ and m according to the error bounds and underlying smoothness of f(x)
[16, 22].
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Figure 1: The errors in logarithmic scale for the Gegenbauer reconstruction method applied to
example 3.1 with N = 16, 24, 36, 52 when (a) λ = m = 1

4N and (b) λ = m = 2
5N .

The numerical results for Example 3.1 show that the Gegenbauer reconstruction method is effec-
tive in eliminating the Gibbs phenomenon for a certain class of (analytic) functions. This theory can
be used to find Gibbs complementary functions for any set of functions, and Chebyshev and Legendre
polynomials both have Gegenbauer polynomials as Gibbs complementary bases [34]. There have been
many results since then that describe some of the difficulties in using the Gegenbauer reconstruction
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method, [7, 22, 23, 38]. Specifically, round off error is a major drawback in computation, as is the
tendency of the Gegenbauer partial sum expansion to behave like a power series, which corresponds
to a Runge phenomenon type behavior [7, 22]. As a result, it is useful to consider other types of
reprojection bases. For instance, the Freud polynomials considered in [23] were shown to yield spec-
tral accuracy without negative effects caused by round off error or Runge phenomenon when the
original projection (3.9) is a Fourier partial sum expansion. It is likely that Freud polynomials can
also be used when (3.9) is a Chebyshev or Legendre approximation. Research will continue in this
area of finding appropriate reprojection bases, and it is possible that the optimal bases may not be
polynomials at all.

4 Discontinuity Detection

In this section we describe an edge detection procedure, originally developed in [18], which recovers
the location and amplitudes of jump discontinuities of a piecewise smooth function f(x) from either
continuous Fourier spectral coefficients or discrete ones based on equally spaced grid values in physical
space. Edge detection is necessary to determine the intervals of smoothness in which the piecewise
smooth function can be reconstructed by the spectral reprojection method.

The detectors presented here effectively resolve the corresponding jump function, [f ](x), so that
edges are detected by separation. Specifically, the detectors “concentrate” near the O(∞) scale
of jump discontinuities which are effectively separated from the smooth regions where [f ](x) ∼
0. This procedure, coined “the concentration method”, offers a large family of edge detectors,
each detector associated with its own particular concentration factor. The prescribed procedure is
computationally efficient and robust. There are, whoever, two major drawbacks. First, in order to
“pinpoint” the edges, which is necessary to define each region of smoothness, one has to introduce
an outside threshold parameter to quantify the “large” jumps, i.e., those with [f ](x) ≫ O(∆x),
implying that the edge detection method is inherently problem dependent, [19]. Second, oscillations
form in the neighborhood of the jump discontinuities. The particular behavior of these oscillations
depends on the specific concentration factors used. Therefore it can be difficult to distinguish what
constitutes a true jump discontinuity as opposed to an oscillating artifact, particularly when several
jump discontinuities are located in the same neighborhood, i.e. when there is limited resolution.
An adaptive, parameter-free edge detection procedure based on the nonlinear limiting of low- and
high-order concentration factors was introduced in [20]. In this work, the authors used the so-called
minmod limiter to retain the high-order in smooth regions while “limiting” the high-order spurious
oscillations in the neighborhoods of the jumps by the less oscillatory low-order detectors. Below we
review the basic construction of the concentration edge detection method and use of the minmod
limiter when the Fourier coefficients of a piecewise smooth function are known. The extension to
other spectral bases and discrete data, as well as proofs regarding the convergence of the method to
the jump discontinuities, can be found in [18, 19, 20].

4.1 Discontinuity Detection by Concentration Kernels

Assume that f(x), x ∈ [−π, π), is a piecewise smooth function with jump discontinuities that have
well defined one-sided limits, f(x±) = limx→x± f(x), and let [f ](x) := f(x+) − f(x−) denote the
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local jump function. We define piecewise smoothness as2

Fx(t) :=
f(x+ t) − f(x− t) − [f ](x)

t
∈ BV [0, δ], ∀x. (4.1)

In practice f(x) has a finite number of jump discontinuities, and (4.1) requires the differential
of f(x) on each side of the discontinuity to have bounded variation. For example, if f ′(x±) are well
defined for finitely many jumps, then (4.1) holds.

The edges in piecewise smooth f(x) are detected using smooth concentration kernels, K(t) =
Kǫ(t), which are characterized by

Kǫ ∗ f(x)−→[f ](x) as ǫ→ 0, (4.2)

where ǫ is a small parameter inversely proportional to the number of Fourier coefficients. Thus the
support of Kǫ ∗f(x) tends to “concentrate” near the edges of f(x) and both the location of the jump
discontinuities as well as their amplitudes can be recovered.

The concentration property of Kǫ is guaranteed by the following properties:

1. Kǫ is odd:

Kǫ(−t) = −Kǫ(t). (4.3)

2. Kǫ is normalized so that ∫

t≥0
Kǫ(t)dt = −1 + O(ǫ). (4.4)

3. The main admissibility requirement is satisfied:

∣∣∣∣
∫

t
tKǫ(t)φ(t)dt

∣∣∣∣ ≤ Const · ǫ||φ||BV . (4.5)

Remark: If Kǫ(t) concentrates near the origin, for example, so that its first moment does not exceed

∫

t
|tKǫ(t)|dt ≤ Const · ǫ, (4.6)

then it is clearly admissible in the sense that (4.5) holds. However, the admissibility condition also
allows for more general oscillatory kernels, Kǫ(t), where (4.6) might not hold, yet (4.5) is satisfied
due to the cancellation effect of the oscillations. This will prove useful later when the minmod limiter
is applied, since oscillations of different signs will be eliminated from the approximation. The main
result from [19] states that

Theorem 4.1 Consider an odd kernel Kǫ(t), (4.3), normalized so that (4.4) holds, and satisfying
the admissibility requirement (4.5). Then the kernel Kǫ(t) satisfies the concentration property (4.2)
for all piecewise smooth f ’s, and the following error estimate holds

|Kǫ ∗ f(x) − [f ](x)| ≤ Const · ǫ. (4.7)

2Here and below we use BV [a, b] to denote the space of functions with bounded variation, endowed with the usual

semi-norm ‖φ‖BV [a,b] :=
∫ b

a
|φ′|dx
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Proof. Since Kǫ(t) is odd, we have

Kǫ ∗ f(x) = −
∫

t≥0
Kǫ(t)(f(x+ t) − f(x− t))dt

= −
∫

t≥0
tKǫ(t)

f(x+ t) − f(x− t) − [f ](x)

t
dt− [f ](x)

∫

t≥0
Kǫ(t)dt.

Applying (4.4) yields

Kǫ ∗ f(x) − [f ](x) = −
∫

t≥0
tKǫ(t)Fx(t)dt + O(ǫ). (4.8)

By the assumption in (4.1), Fx(t) is BV and it is therefore bounded. Consequently, in the particular
case that the moment bound (4.6) holds, the first term on the right of (4.8) is of order O(ǫ), yielding

|Kǫ ∗ f(x) − [f ](x)| ≤ Const ·
∫

|tKǫ(t)|dt + O(ǫ) = O(ǫ).

In the general case, Fx(t) has bounded variation, and the admissibility requirement (4.5) implies
that the first term on the right of (4.8) is of order O(ǫ), and we conclude

|Kǫ ∗ f(x) − [f ](x)| ≤ Const||Fx(t)||BV · ǫ+ O(ǫ) = O(ǫ).

4.2 Examples of Concentration Kernels

4.2.1 Compactly supported kernels

Our first example consists of concentration kernels which “concentrate” near the origin, so that (4.6)
holds. We consider a standard mollifier, φǫ(t) := 1

ǫφ( t
ǫ), based on an even, compactly supported

bump function, φ ∈ C1
0 (−1, 1) with φ(0) = 1. We then set

Kǫ(t) =
1

ǫ
φ′(

t

ǫ
) ≡ φ′ǫ(t). (4.9)

Clearly, Kǫ is an odd kernel satisfying the required normalization (4.4)

∫

t≥0
Kǫ(t)dt =

1

ǫ

∫

t≥0
φ′(

t

ǫ
)dt = −φ(0) = −1.

In addition, its first moment is of order

∫

t≥0
|tKǫ(t)|dt = ǫ

∫

0≤s≤1
|s||̇φ′(s)|ds = O(ǫ),

and hence (4.6) holds. Theorem 4.1 then implies

Corollary 4.1 Consider the odd kernel Kǫ(t) = φ′ǫ(t), based on even φ ∈ C1
0 (−1, 1) with φ(0) = 1.

Then Kǫ(t) satisfies the concentration property (4.2), and the following error estimate holds

φ′ǫ ∗ f(x) = [f ](x) + O(ǫ). (4.10)
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4.2.2 The conjugate Dirichlet kernel

The conjugate Dirichlet kernel,

KN (t) = − 1

logN
D̃N (t), D̃N (t) :=

N∑

k=1

sin kt,

is an example of an oscillatory concentration kernel. Clearly, KN (t) is an odd kernel. Moreover, the
normalization (4.4) holds with ǫ ∼ 1

log N ,

∫ π

t=0
KN (t)dt = − 2

logN

∑

odd k′s

1

k
= −1 + O(ǫ), ǫ ∼ 1

logN
.

Finally, summing

D̃N (t) =
N∑

k=1

sin kt =
cos t

2 − cos (N + 1
2 )t

2 sin t
2

,

we find that the first moment of KN = −D̃N (t)/ logN does not exceed

∫ π

t=0
|tKN (t)|dt ≤ Const · ǫ, ǫ =

1

logN
,

so that the requirement (4.6) is fulfilled.
Theorem (4.1) then yields the classical result regarding the concentration of conjugate partial

sums, [4, §42],[45, §II Theorem 8.13],

− 1

logN
D̃N ∗ f(x) = [f ](x) + O(

1

logN
). (4.11)

We note in passing that in the case of Dirichlet conjugate kernel, KN (t) does not concentrate near
the origin, but instead (4.6) is fulfilled thanks to its uniformly small amplitude of order O(1/ logN).
The error, however, is only of logarithmic order, [18].

4.2.3 Oscillatory kernels (general concentration factors)

To accelerate the unacceptable logarithmically slow rate of Dirichlet conjugate kernel in (4.11), we
consider general form of odd concentration kernels

Kτ
N (t) := −

N∑

k=1

τ(
k

N
) sin kt, (4.12)

based on concentration factors, τ( k
N ) which are yet to be determined. Clearly Kτ

N (t) is odd. Next,
for the normalization (4.4) we note that

∫ π

t=0
Kτ

N (t)dt = −2
∑

k odd

τ( k
N )

k
∼ −

∫ 1

0

τ(x)

x
dx.

In fact, the above Riemann’s sum amounts to the midpoint quadrature, so that for τ(ξ)
ξ ∈ C2[0, 1],

one has ∫ π

t=0
Kτ

N (t)dt = −2
∑

k odd

τ( k
N )

k
= −

∫ 1

0

τ(ξ)

ξ
dξ + O(

1

N2
), (4.13)
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and thus (4.4) holds for normalized concentration factors τ(ξ),

∫ 1

0

τ(ξ)

ξ
dξ = 1. (4.14)

Finally, we address the admissibility requirement (4.5) (and in particular (4.6)). Let ξk = k
N . We

use the identity

2 sin(t/2)Kτ
N (t) ≡

N−2∑

k=1

(τ(ξk) − 2τ(ξk+1) + τ(ξk+2))
sin (k + 1)t

2 sin(t/2)

− (τ(1) − τ(ξN−1))
sinNt

2 sin(t/2)
+ (τ(ξ2) − τ(ξ1))

sin t

2 sin(t/2)

+ τ(ξ1) cos
t

2
− τ(1) cos (N +

1

2
)t =

=: I1(t) + I2(t) + I3(t) + I4(t) − I5(t). (4.15)

This leads to the corresponding decomposition of Kτ
N (t)

Kτ
N (t) = Rτ

N (t) − τ(1)

2

cos (N + 1
2)t

sin t
2

.

Here, Rτ
N (t) consists of the first four terms on the right hand side of (4.15),

∑4
j=1 Ij(t)/2 sin(t/2),

and it is easily verified that each one of these terms has a small first moment satisfying (4.6) (and
consequently, (4.5) holds), i.e.

∫ π

t=0
|tRτ

N (t)|dt ≤ Const · ||τ ||C2[0,1]
logN

N
. (4.16)

For example, using the standard bound | sin(kt)/2 sin(t/2)| ≤ min{k, 1/t}, the contribution corre-
sponding to the first term, I1(t), does not exceed

∫ π

t=0

∣∣∣∣t
I1(t)

2 sin(t/2)

∣∣∣∣ dt ≤
max |τ ′′|
N2

N−2∑

k=1

[∫ 1/N

t=0
+

∫ π

t=1/N

] ∣∣∣∣
sin(kt)

2 sin(t/2)

∣∣∣∣ dt = O(
logN

N
).

Similar estimates hold for the remaining contributions of I2, I3 and I4. In particular, since τ(ξ)/ξ is
bounded, |τ(1/N)| ≤ O(1/N), and hence

∫
|tI4(t)/2 sin(t/2)|dt = O(1/N).

Finally, the admissibility of the fifth term on the right of (4.15) is due to standard cancellation
which guarantees that (4.5) holds,

∣∣∣∣∣
τ(1)

2

∫ π

t=0
t
cos (N + 1

2)t

sin t
2

φ(t)dt

∣∣∣∣∣ ≤ Const · τ(1)
N

||φ||BV . (4.17)

It is in this context of spectral concentration kernels that admissibility requires the more intri-
cate property of cancellation of oscillations. Summarizing (4.13), (4.16) and (4.17), we obtain as a
corollary of the main result regarding spectral edge detection using concentration kernels, Kτ

N (t).
In particular, since Kτ

N (t) are N−degree trigonometric polynomials, one detects the edges of the
piecewise smooth function f(x) directly from its spectral projection SN (f) :=

∑N
k=−N f̂ke

ikx,

Kτ
N ∗ f ≡ Kτ

N ∗ SN (f) = iπ
N∑

k=−N

sgn(k)τ(
|k|
N

)f̂ke
ikx.

12



Corollary 4.2 Consider the odd concentration kernel (4.12)

Kτ
N (t) = −

N∑

k=1

τ(
k

N
) sin kt,

τ(ξ)

ξ
∈ C2[0, 1].

Assume that τ(·) is normalized so that (4.14) holds

∫ 1

0

τ(ξ)

ξ
dξ = 1.

Then Kτ
N (t) admits the concentration property (4.2), and the following estimate holds

|Kτ
N ∗ SN (f) − [f ](x)| = Const · logN

N
. (4.18)

We note that the error estimate in (4.18) is valid throughout the interval, including at the location
of the jump discontinuities.

We write the concentration method as

S̃τ
N [f ](x) := iπ

N∑

k=−N

sgn(k)τ(
|k|
N

)f̂ke
ikx, (4.19)

noting the proof in [4] for τ(ξ) = 1:

S̃N [f ](x) := iπ
N∑

k=−N

sgn(k)(
|k|
N

)f̂ke
ikx → logN [f ](x).

Some examples of (oscillatory) concentration factors include:

1. Trigonometric factors of the form

τ(ξ) = τα(ξ) := sinαξ/Si(α) (4.20)

with the proper normalization Si(α) :=
∫ α
0 (sin η/η)dη.

2. Polynomial factors of the form
τ(ξ) = τp(ξ) := pξp. (4.21)

For p odd, Kτp

N ∗ f = (−1)[p/2]pN−pS
(p)
N (f) and for p even, Kτp

N ∗ f = (−1)p/2pN−pH ∗ S(p)
N (f)

where H(x) = i
∑
sgn(k)eikx. Corollary 4.2 yields

∣∣∣∣∣∣
iπ

Np

N∑

k=−N

sgn(k)|k|pf̂ke
ikx − [f ](x)

∣∣∣∣∣∣
≤ Const · logN

N
.

The last error estimate is (essentially) first order. It is sharp. The polynomial factor τp with
higher p lead to faster convergence rate at selected interior points, bounded away from the
singularities of f .

3. Exponential factors of the form:

τ exp(ξ) = Const · ξe
1

γξ(ξ−1) , Const =

∫
exp

( −1

γη(η − 1)

)
dη (4.22)

normalized so that
∫ 1
ξ=0 τ

exp(ξ)/ξdξ = 1.
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Polynomial concentration factors (of odd degree) correspond to differentiation in physical space;
trigonometric factors correspond to divided differences in the physical space [3]. Our main result
stated in Corollary 4.2 provides us with the framework of general concentration kernels which are not
necessarily limited to a realization in the physical space. In particular, the exponential concentration
factors (4.22) vanish at ξ = 0, 1 to any prescribed order,

dj

dξj
τ(ξ)∣∣∣

ξ=0

=
dj

dξj
τ(ξ)∣∣∣

ξ=1

= 0, j = 0, 1, 2, . . . , p− 1. (4.23)

The higher p is, the more localized the corresponding concentration kernel, Kτ
N (·) becomes, [19].

This is because Kτ
N (tℓ)/N coincide with the ℓ-discrete Fourier coefficient of τ(·), and since τ(ξ) and

its first p-derivatives vanish with at both ends, ξ = 0, 1, there is a rapid decay of its (discrete) Fourier
coefficients, |τ̂ℓ| ≤ Const.ℓ−p so that

|Kτ
N (tℓ)| ≤ Const.‖τ‖Cp+1[0,1]

1

(Ntℓ)p
.

Thus, for t away from the origin, Kτ
N (t) is rapidly decaying for large enough N ’s.

To demonstrate the detection of edges by the concentration factors outlined above, consider the
following example of a discontinuous function defined on [−π, π]:

Example 4.1

f(x) =






1
2 cos 3x+ 1

2 −π ≤ x < −π
2

4
1+2x2 − 2 −π

2 ≤ x < π
2

sinx cos 7x
2

π
2 ≤ x < π.

(4.24)

Assume we are given the Fourier coefficients of f(x) and we wish to recover its corresponding
jump function:

[f ](x) =





6−5π2

4+2π2 ≈ −1.83 x = −π
2

1√
2
− 4−2π2

2+π2 ≈ 2.03 x = π
2

0 elsewhere.

(4.25)

Figure 2 demonstrates the use of the various concentration factors in the concentration method
for detecting edges. Note the improved localization of the exponential concentration factor (4.22).

Figure 2 shows that the concentration method (4.19) does indeed “concentrate” at the discontinu-
ities of fnctions. However, it is also apparent that there are some problems. Specifically, oscillations
that occur in the neighborhood of a jump discontinuity can be misidentified as true edges. On the
other hand, using some of the lower-order concentration factors increase the risk of identifying a steep
gradient as an edge, especially when few Fourier coefficients are originally known. This is further
complicated when jump discontinuities are located near to each other, since the oscillations occurring
in the neighborhoods of each discontinuity interfere with the true jump discontinuities. There are
distinctions between the different concentration factors that can be exploited in determining the true
jumps from the artificial oscillations or the steep unresolved gradients, however. Although the first
order polynomial edge detection (4.21) has slow convergence away from the discontinuities, there
are few oscillations in the neighborhoods of the discontinuities. On the other hand, the exponential
concentration factor (4.22) suffers from severe oscillations within the neighborhoods, but produces
rapid convergence to zero away from the neighborhoods of discontinuities, This loss of monotonicity
with the increasing order is, of course, the canonical situation in many numerical algorithms. In [20],
an adaptive edge detection procedure was introduced that realizes the strengths of various concen-
tration factors used in the edge detection method. That is, away from the jumps, the exponentially
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Figure 2: The concentration method, (4.19) with N = 64, applied to Example 4.1 using (a) Trigono-
metric factor with α = π, (b) Polynomial factor with p = 1, and (c) exponential factor with Const = 3
and γ = 6. In all three figures the underlying function is dashed and the jump function approximation
is solid.

small factors dominates the approximation by taking the smallest (in absolute) value between the
low-order and high-order detectors. As the jump discontinuity is approached, the spurious oscilla-
tions produced by the high-order method should be rejected by the low-order detectors: hence, when
two values disagree in sign, indicating spurious oscillations, the detectors should be set to zero. We
end up with the so-called minmod limiter which plays a central role in non-oscillatory reconstruction
of high-resolution methods for nonlinear conservation laws, (e.g., [33, 43] and the references therein),
and has been used in the context of edge detection in [6]. The minmod limiter is:

S̃minmod
N [f ](x) = minmod(S̃τexp

N [f ](x), S̃τp

N [f ](x), S̃τα

N [f ](x)), (4.26)

where the k-tuple minmod operation takes the form

minmod{a1, a2, . . . , ak} :=





s ·min(|a1|, |a2|, . . . , |ak|) if sgn(a1) = . . . = sgn(ak) := s

0 otherwise.
(4.27)

Our numerical results indicate using the three different concentration factors, (4.20), (4.21), and
(4.22), is enough to remove most of the unwanted oscillations from the jump function approximation.
Typically p = 1, α = π and τ exp with Const = 3 and γ = 6 yield approximations converging to the
jump function with very few oscillations. Figure 3 displays these results.

What is remarkable about the minmod approximation is that no outside scaling parameter is
introduced to determine what qualifies as an edge. Hence small scale features can be recognized and
the edges can be located at very close distances. This has been shown to be extremely important
in brain MRI applications [2], where various tissue regions must be identified with a small number
of Fourier coefficients. Of course, some outside thresholding must be introduced when noise in the
problem is comparable to the jump magnitudes, [20]. Finally, we note that the concentration method
has been developed for other spectral expansions in [19], and has been used for post-processing
Legendre approximations of Burgers and Euler’s equations. In the case of Euler’s equation, they
were also used to find edges in the derivatives [21].

4.3 Recent Advances in the Concentration Method

Using the minmod limiter (4.26) has dramatically improved the results of the concentration method,
(4.19). However, it is clear from Figure 3 that some thresholding is still needed to completely remove
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Figure 3: The minmod limiter, (4.26), applied to Example 4.1 using the concentration factors (4.20),
(4.21) and (4.22). The underlying function is dashed and the jump function approximation is solid.

the remaining oscillations. One way to improve the results is to filter the oscillations produced by
the concentration method. Care must be exercised, however, since too much filtering will potentially
lose jump locations. In [9], it was shown that applying a Lanczos filter, (2.3), of different orders
directly to the concentration method resulted in a new family of admissible concentration factors:

τf (η) =
1

γn
τ(η)(

sin πη

πη
)n, (4.28)

for n = 1, 2, · · ·. Here γn is a normalization constant defined by

γn :=

∫ 1

ǫ

τ(η)

η
τn
L(η)dη.

Other filters, (2.2) and (2.4), could also be applied yielding similar results. Filtered concentration
factors are preferred when noise is present in the underlying function, [9].

To further reduce the method induced oscillations, another technique was introduced in [9] that
takes advantage of the fact that each concentration factor, either filtered or unfiltered, generates its
own signature profile, or waveform, defined for x ∈ [−π, π) as:

W τ
N (x) :=

N∑

k=1

τ(
k

N
)
cos kx

k
. (4.29)

An alternative derivation [9, 18] of the convergence estimate of the concentration method (4.19) leads
directly to the waveform (4.29), and is reproduced here.

For simplicity, we consider a single jump discontinuity and note that the process is easily extended
to include any finite number of jumps. We begin by integrating the Fourier coefficients (2.5) by parts
to obtain

f̂k = − i

2πk
[f ](ξ)e−ikξ − i

2πk

∫ π

−π
f ′(τ)e−ikτ dτ. (4.30)

Substituting (4.30) into the concentration method, (4.19), yields

S̃τ
N [f ](x) = iπ

N∑

k=−N

sgn(k)τ(
|k|
N

)
[ −i
2πk

[f ](ξ)e−ikξ − i

2πk

∫ π

−π
f ′(τ)e−ikτdτ

]
eikx

=
1

2
[f ](ξ)

N∑

k=−N

sgn(k)τ(
|k|
N

)
eik(x−ξ)

k
+R(x), (4.31)
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where the residual R(x) is defined as

R(x) :=
1

2

N∑

k=−N

1

k
sgn(k)τ(

|k|
N

)

∫ π

−π
f ′(τ)e−ik(τ−x)dτ

=
N∑

k=1

1

k
τ(
k

N
)

∫ π

−π
f ′(τ) cos k(τ − x)dτ. (4.32)

Since τ( k
N ) is bounded and the integral is O( 1

k ), we have R(x) → 0 as N → ∞ with O( 1
N ).3

Therefore, (4.31) yields

S̃τ
N [f ](x) =

[f ](ξ)

2

N∑

k=−N

sgn(k)τ(
|k|
N

)
eik(x−ξ)

k
+ O(

1

N
)

= [f ](ξ)
N∑

k=1

τ(
k

N
)
cos k(x− ξ)

k
+ O(

1

N
), (4.33)

leading to the definition of the matching waveform in (4.29). Clearly,

W τ
N (x− ξ) = δξ(x) + O(

1

N
), (4.34)

where δξ(x) is the Kronecker delta function.

The distinct form of S̃τ
N [f ](x) is therefore given byW τ

N (x−ξ) which represents the shape which the
concentration method should produce when it locates a simple unit step jump discontinuity at x = ξ.
This exact shape may not be generated due to the structure of the underlying function, the relative
positions of adjacent jumps, or noise. However, convolving the traditional concentration method,
(4.19), with its signature profile, (4.29), generates areas of best match which are the likely candidates
for the simple jump discontinuity locations. Note that W τ

N (x−ξ) depends on the concentration factor
employed, the location of the jump discontinuity, and N, but to within a proportionality constant,
it does not depend on the underlying function.

This observation led to the definition of a new family of concentration factors coined the “match-
ing waveform concentration factors” in [9]. In fact, the edge detection method was derived as the
convolution

M̃ τ
N [f ](x) := γτ

M (N)(S̃τ
N [f ] ∗W τ

N )(x). (4.35)

Here, γτ
M (N) is used to normalize M̃ τ

N [f ](x) and ensures that that the correct signed magnitude of
the jump function is recovered. This is accomplished by requiring M̃ τ

N [f ](x)|x=ξ = 1 in the case

where S̃τ
N [f ](x) = W τ

N (x), yielding

1

γτ
M (N)

:=
1

π
(W τ

N ∗W τ
N )(x)

∣∣∣
x=ξ

=
1

π

∫ π

−π
(W τ

N (τ))2dτ. (4.36)

It was further shown in [9] that (4.35) can be rewritten in the form of (4.19) as

M̃ τ
N [f ](x) = iπ

N∑

k=−N

sgn(k)τM (
|k|
N

)f̂k exp (ikx), (4.37)

3This error estimate is a worst case scenario. Other choices of concentration factors yield higher order convergence
away from the jump discontinuities, [18, 19].
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where we have defined

τM (
|k|
N

) := γτ
M (N)τ(

|k|
N

)

∫ π

−π
W τ

N (τ) exp (−ikτ)dτ. (4.38)

Figure 4 demonstrates the reduced numerical oscillations in the concentration method when the new
concentration factors are applied.
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Figure 4: The concentration method, (4.19) with N = 64, applied to Example 4.1 using the trigono-
metric factor (4.20) with α = π: (a) The original results, (b) the Lanczos factor (4.28) with n = 1,
and (c) the matching concentration factor (4.38). In all three figures the underlying function is
dashed and the jump function approximation is solid.

Another concentration factor introduced in [9] is the zero-crossing concentration factor:

τZ

( |k|
N

)
= −k

(
τ( |k|N )

)2

∑N
l=1 (τ( |l|N ))2

, (4.39)

where τ is any of the filtered or unfiltered admissible concentration factors defined earlier. The
zero crossing concentration factor is derived by determining the regions corresponding to the point
of the zero crossing of the second derivative approximation where the approximation of the first
derivative has maximum amplitude. This version of the concentration method attempts to locate
the zero crossing signature profile that can be created by the derivative projection of the concentration
method (4.19). The analysis is similar to that of the matching waveform concentration method, and
can be found in [9]. In this case, the concentration factors are not admissible in the traditional sense,
since the concentration method using the zero crossing concentration factor converges to

[f ](x) − 1

2
[f ](x± 2ρ) + O(

logN

N
),

where ρ is the distance of the first maximum away from the jump discontinuity.
As noted in [9], there are some advantages in using the zero-crossing concentration method.

Most notably, the support of the jump function approximation is in some sense reduced, so that
the minmod algorithm is better able to pinpoint jump discontinuities when it is used. Figure 5
demonstrates this effect. Notice that any remaining oscillations from the previous application of
minmod (see Figure 3) have been eliminated.

The jump discontinuities of the piecewise smooth function found by the edge detection method
determine the regions of smoothness. We can now re-exapnd the solution in each region of smoothness
using the spectral reprojection method. Section 6 demonstrates the effectiveness of filtering, edge
detection, and spectral reprojection through numerical example.

18



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

[f]
(x

)

Figure 5: The minmod limiter, (4.26), applied to Example 4.1 using the concentration factor (4.20)
with Lanczos filtering (4.28) and in conjunction with the matching waveform (4.38) and the zero
crossing waveform (4.39) methods. The underlying function is dashed and the jump function ap-
proximation is solid.

5 Linear Equations with Discontinuous Solutions

The filtering and reprojection techniques have proven very useful when solving time dependent
partial differential equations using spectral methods. However, despite compelling numerical evidence
[17, 21, 39], there is no general theory that guarantees that reprojection will recover high order
accuracy in numerical simulations. The question is, if spectral reprojection is used on the time-
evolved solution, can the Gibbs phenomenon be eliminated and high order accuracy be restored?
More specifically, does the spectal method solution of the partial differential equation retain high
order information even after being convected forward in time?

This section provides a partial answer to these questions for Fourier spectral methods solutions of
linear hyperbolic equations with discontinuous initial conditions. Although Fourier spectral methods
(used for spatial discretization) yield only first accurate order solutions, this numerical solution
retains its underlying high order information even after being convected forward in time. In turn,
an exponentially accurate solution can be recovered by post-processing.4

To see that this is indeed the case, consider the hyperbolic problem

Ut = LU
(where L is a semi-bounded operator) with some discontinuous initial condition

U(x, 0) = U0(x).

The Galerkin approximation is (
∂u

∂t
− Lu, φk

)

L2[−π,π]
= 0

where φ is a (possibly multi-dimensional) trigonometric polynomial in x (where x may represent a
vector of multiple dimensions). When U0(x) is a continuous we have the usual error estimate

‖u− U‖L2[−π,π] ≤ cN−s‖U0‖Hs
p [π,π].

4Here we only consider Fourier spectral methods. Spectral methods using Chebyshev and Legendre polynomials
for scalar nonlinear partial differential equations have been shown to be stable and to converge to the correct entropy
solution, [32, 36, 40, 41, 35, 42, 43], and there is compelling numerical evidence that indeed spectral accuracy can be
recovered by post-processing, [17, 21, 37, 39].
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However, when U0(x) is discontinuous this error estimate is no longer valid, but we have the corre-
sponding result in the weak sense:

Theorem 5.1 [34] For every smooth function ψ(x),

|(u− U,ψ)|L2[−π,π] ≤ cN−s‖ψ‖Hs
p [−π,π].

Proof. Given a smooth function ψ(x, t), we can always find a function V (x, t) which is the solution
of

∂V

∂t
= −L∗V with V (x, 0) = V0(x),

such that at time t = τ , the two are equal ψ(x, τ) = V (x, τ). This is always possible because we can
solve the hyperbolic equation backwards and forwards, and so can pick initial conditions which give
us the solution we want at time τ . Let v(x, t) be the Galerkin approximation

(
∂v

∂t
+ L∗v, φk

)

L2[−π,π]
= 0,

where φk(x, t) is a trigonometric polynomial in x, and v(x, 0) = PNV0 . The solutions U and V
satisfy Green’s identity

(U(τ), V (τ))L2[−π,π] = (U0, V0)L2[−π,π] ,

as can be seen from

∂

∂t
(U, V )L2[0,2π] = (Ut, V )L2[−π,π] + (U, Vt)L2[−π,π] = (LU, V )L2[−π,π] + (U,−L∗V )L2[−π,π]

= (LU, V )L2[−π,π] − (U,L∗V )L2[−π,π] = 0.

Similarly, by observing that both u and v are trigonometric polynomials in x, we have

(
∂u

∂t
, v

)

L2[−π,π]
= (Lu, v)L2[−π,π] and

(
∂v

∂t
, u

)

L2[−π,π]
= − (L∗v, u)L2[−π,π] .

Therefore u and v also satisfy Green’s identity

(u(τ), v(τ))L2[−π,π] = (u0, v0)L2[−π,π] .

Recall that the terms (U0 − u0, v0)L2[−π,π] and (u0, V0 − v0)L2[−π,π] are zero because (U0 − u0) and
(V0 − v0) are orthogonal to the space of trigonometric polynomials in which u0 and v0 live. By using
Green’s identity and adding and subtracting these zero terms, we obtain

(U(τ) − u(τ), V (τ)) = (U(τ), V (τ)) − (u(τ), V (τ))

= (U0, V0) − (u(τ), V (τ) − v(τ)) − (u0, v0)

= (U0, V0) − (u0, v0) − (U0 − u0, v0) + (u0, V0 − v0)

− (u(τ), V (τ) − v(τ))

= (U0, V0) − (U0, v0) + (u0, V0 − v0) − (u(τ), V (τ) − v(τ))

= (U0 + u0, V0 − v0) − (u(τ), V (τ) − v(τ)) .

Since L is semi-bounded, the Galerkin approximation is stable, and spectral accuracy follows:

(U(τ) − u(τ), V (τ)) ≤ k1N
−s‖V0‖Hs

p [−π,π] + k2N
−s‖V (·, τ)‖Hs

p [−π,π] ≤ cN−s‖V0‖Hs
p [−π,π].
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This theorem shows us that a discontinuous profile can be convected forward in time with a
spectral method, and that furthermore, the numerical solution at the final time contains the necessary
information to extract a high order approximation to the exact solution.

The next question is whether this fact is still true for solutions of nonlinear equations. Although
it has been shown that spectral methods for scalar nonlinear equations with discontinuous solutions
are stable with appropriate filtering, [32, 34], there is no theory which guarantees that high order
information can be extracted from the solution by spectral reprojection. However, numerical evidence
indicates that highly accurate solutions may be recovered from spectral method approximations of
conservation laws in one dimension, [21, 39], as well as for shallow water equations on a sphere,
[17]. To do so, we first determine the regions of smoothness of the final time solution by the edge
detection method. We can now re-expand the solution in any interval of smoothness using a Gibbs
complementary basis.

6 Fourier Spectral Approximation of Burgers Equation

Equipped with the results from the previous sections, we are now ready to implement a fully au-
tomated Fourier spectral method code that yields high accuracy and strongly resolves the shock
discontinuities. We will consider the periodic inviscid Burgers equation:

∂

∂t
u(x, t) +

∂

∂x
(
u2(x, t)

2
) = 0, (6.1)

where (x, t) ∈ [−π, π]× [0,∞), with the initial condition u(x, 0) = sinx, and the prescribed periodic
boundary conditions, u(−π, t) = u(π, t).

In the Fourier spectral method we seek a solution of the form

uN (x, t) =
N∑

k=−N

ak(t)e
ikx

such that the equation
∂

∂t
uN (x, t) +

∂

∂x
(
u2

N (x, t)

2
) = 0,

is satisfied at the gridpoints xj = 2πj
N , j ∈ [0, . . . ,N − 1]. This results in a system of ordinary

differential equations for ak(t). This system of ODEs is evolved forward in time, based on the initial

conditions, with the classical fourth order Runge-Kutta scheme. We use a time step ∆t =
√

2
Nπ . An

exponential filter is used at each time step to stabilize the scheme. The solution at time T = 1.5 is
displayed in Figure 6. This solution is stable, but demonstrates the effects of the Gibbs phenomenon,
as we see in the errors. Edge detection and Gegenbauer reconstruction are then used to produce
a oscillation-free high order numerical solution, seen in Figure 7. In the post-processed solution,
the time-stepping errors dominate. We emphasize that only the first step, the Fourier spectral
method, is time-implemented. Subsequent steps, including the edge detection and post-processing
using spectral reprojection, are only performed once, at the final time T = 1.5. Therefore very little
extra work is required to obtain high-order accuracy.

This numerical experiment demonstrates how Fourier spectral methods use filtering to obtain
a stable solution which retains high order information, so that edge detection post-processing can
be applied to recover a high order solution for the discontinuous solution of the partial differential
equation.
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Figure 6: (a) The numerical solution of (6.1) at time T = 1.5 for N = 40 using a spectral viscosity
filter. (b) The errors in logarithmic scale for the time evolved solution.
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Figure 7: (a) The Gegenbauer reconstruction of the numerical solution to (6.1) at time T = 1.5 for
N = 40. (b) The errors in logarithmic scale for the Gegenbauer reconstruction method.
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