Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to computing page for the fourth course APMA0360
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to Mathematica tutorial for the fourth course APMA0360
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to the main page for the fourth course APMA0360
Return to Part VI of the course APMA0360
Introduction to Linear Algebra with Mathematica

Preface


2D Heat Equation


2D Heat Equation in Polar Coordinates: Symmetry


Let us consider the heat equation in a polar coordinates Due to the special geometry of the spacial domain, it is natural to consider the initial boundary value problems using polar coordinates (r , θ) satisfying
\[ x = r\,\cos\theta , \qquad y = r\,\sin\theta . \]
Upon differentiating these equations, we get
\begin{align*} \cos\theta\,r_x - r \left( \sin\theta \right) \theta_x &= 1 , \\ \left( \cos\theta \right) r_y - r \left( \sin\theta \right) \theta_y &= 0, \\ \left( \sin\theta \right) r_x + r \left( \cos\theta \right) \theta_x &= 0 , \\ \left( \sin\theta \right) r_y + r \left( \cos\theta \right) \theta_y &= 1. \end{align*}
From latter, it follows
\begin{align*} r_x &= \frac{x}{r} , \qquad r_y = \frac{y}{r} . \qquad r_{xx} = \frac{1}{r} - \frac{x^2}{r^3} , \qquad r_{yy} = \frac{1}{r} - \frac{y^2}{r^3} , \\ \theta_x &= - \frac{\sin\theta}{r} = - \frac{y}{r^2} , \qquad \theta_y = \frac{\cos\theta}{r} = \frac{x}{r^2} , \qquad \theta_{xx} = \frac{2xy}{r^4} , \qquad \theta_{yy} = - \frac{2xy}{r^4} . \end{align*}
Therefore,
\begin{align*} u_{xx} &= u_{rr} \frac{x^2}{r^2} - u_{r\theta} \frac{2xy}{r^3} + u_{\theta\theta} \frac{y^2}{r^4} + u_r \left( \frac{1}{r} - \frac{x^2}{r^3} \right) + u_{\theta} \frac{2xy}{r^4} , \\ u_{yy} &= u_{rr} \frac{y^2}{r^2} + u_{r\theta} \frac{2xy}{r^3} + u_{\theta\theta} \frac{x^2}{r^4} + u_r \left( \frac{1}{r} - \frac{y^2}{r^3} \right) + u_{\theta} \left( -\frac{2xy}{r^4} \right) . \end{align*}
The heat equation in polar coordinates becomes
\begin{equation} \label{Eq2heat.1} u_t = \alpha \left( u_{rr} + \frac{1}{r}\,u_r + \frac{1}{r^2}\,u_{\theta\theta} \right) \end{equation}

Example 1: Consider the inner Dirichlet problem for the heat equation in a 2D disc

\begin{align*} &\mbox{Heat equation:} \qquad &u_t &= \alpha \left( u_{rr} + \frac{1}{r}\,u_r + \frac{1}{r^2}\,u_{\vartheta\theta} \right) \qquad\mbox{for } 0 \le r < a \mbox{ and } t > 0, \\ &\mbox{Boundary condition:} \qquad &u(r = a, \vartheta ,t) &= 0 , \qquad t > 0 , \\ &\mbox{Initial condition:} \qquad &u(r, \vartheta ,,0) &= f(r, \vartheta ) , \qquad 0 \le r < a, \\ &\mbox{Periodic condition:} \qquad &u(r, \vartheta ,t) &= u(r, \vartheta + 2\pi ,t) , \qquad t > 0 , \\ &\mbox{Regularity condition:} \qquad & f(r=a, \vartheta ) &= 0 , \quad\qquad u, u_t , u_{rr} , u_{\vartheta\vartheta}\in 𝔏². \end{align*}
We apply separation of variables to solve this equation.

First we try to find non-trivial “basic” solutions of the form

\[ u(r, \vartheta ,t) = R(r)\,\Theta (\vartheta )\,T(t). \]
Substituting this product into the heat equation, we reach
\[ R(r)\,\Theta (\vartheta )\,T' (t) = \alpha \left( R'' (r)\,\Theta (\vartheta ) + \frac{1}{r}\, R' (r)\,\Theta (\vartheta ) + \frac{1}{r^2}\, R(r)\,\Theta '' (\vartheta ) \right) T(t) . \]
Dividing both sides by u = R(r) Θ(ϑ) T(t), we get
\[ \frac{T' (t)}{T(t)} = \alpha \left( \frac{R'' (r)}{R(r)} + \frac{1}{r} \cdot \frac{R' (r)}{R(r)} + \frac{1}{r^2} \cdot \frac{\Theta ''(\vartheta )}{\Theta (\vartheta )} \right) . \]
As the left-hand side only involves time variable t and the right-hand side only spacial variables r, ϑ, they can be equal only when both sides are a constant. So there exists a constant λ such that
\begin{align*} \frac{T' (t)}{T(t)} &= - \alpha\,\lambda , \\ \frac{R'' (r)}{R(r)} + \frac{1}{r} cdot \frac{R' (r)}{R(r)} + \frac{1}{r^2} \cdot \frac{\Theta ''(\vartheta )}{\Theta (\vartheta )} &= -\lambda . \end{align*}
Multiply both sides by r², we have
\[ \frac{r^2 R'' (r)}{R(r)} + \frac{r\,R' (r)}{R(r)} + r^2 \lambda = \frac{\Theta ''(\vartheta )}{\Theta (\vartheta )} . \]
The left-hand side only involves r and the right-hand side only ϑ. Thus, there is a constant μ such that
\[ \frac{\Theta ''(\vartheta )}{\Theta (\vartheta )} = \mu , \qquad \frac{r^2 R'' (r)}{R(r)} + \frac{r\,R' (r)}{R(r)} + r^2 \lambda = \mu . \]
As Θ(ϑ) is obviously 2π periodic, we obtain
\[ \mu = n^2 , \qquad n=1,2,3,\ldots . \]
and
\[ \Theta_n (n \vartheta ) = a_n \cos (n\vartheta ) + b_n \sin (n \vartheta ), \qquad n=1,2,3,\ldots . \tag{1.1} \]
On the other hand, the equation for R now becomes
\[ r^2 R'' (r) + r\,R' (r) + \left( r^2 \lambda - n^2 \right) R(r) = 0 , \qquad 0 \le r < a. \tag{1.2} \]
This function must also satisfy the boundary condition
\[ R(a) = 0 . \tag{1.3} \]
Differential equation (1.2) is a Bessel equation. For each n, we have λn, k eigenvalues, such that the boundary value problem (1.2), (1.3) has a solution Rn, k. Then the required solution is represented by a double sum:
\[ u(r, \vartheta , t) = \sum_{n,k} \left[ a_{n, k} R_{n, k}(r)\,\cos (n\vartheta ) + b_{n, k} R_{n, k}(r)\,\sin (n\vartheta ) \right] e^{-\alpha\,\lambda_{n, k}t} . \tag{1.4} \]
The coefficients are determined from the expansion
\[ f(r, \vartheta ) = \sum_{n,k} \left[ a_{n, k} R_{n, k}(r)\,\cos (n\vartheta ) + b_{n, k} R_{n, k}(r)\,\sin (n\vartheta ) \right] . \tag{1.5} \]
ϑ ϑ ϑ

2D Heat Equation in Polar coordinate: General Case


Fokas Method for 2D Heat Equation in Polar coordinate


\begin{align*} &\mbox{Heat equation:} \qquad &u_t &= \alpha \left( u_{rr} + \frac{1}{r}\,u_r + \frac{1}{r^2}\,u_{\theta\theta} \right) \qquad\mbox{for } 0 &le r < a \mbox{ and } t > 0, \\ &\mbox{Initial condition:} \qquad &u(r, \theta ,,0) &= f(x) , \qquad 0 \le r > a, \\ &\mbox{Boundary condition:} \qquad &u(0,t) &= g(t) , \qquad t > 0 , \\ &\mbox{Regularity condition:} \qquad & \lim_{x,t \to +\infty}\,|u(x,t)| &= 0 , \quad\qquad u, u_t , u_{xx} \in 𝔏²(R). \end{align*}

 

Return to Mathematica page)
Return to the main page (APMA0360)
Return to the Part 1 Basic Concepts
Return to the Part 2 Fourier Series
Return to the Part 3 Integral Transforms
Return to the Part 4 Parabolic Differential Equations
Return to the Part 5 Hyperbolic Differential Equations
Return to the Part 6 Elliptic Equations
Return to the Part 7 Numerical Methods