Preface
This tutorial was made solely for the purpose of education and it was designed for students taking Applied Math 0330. It is primarily for students who have very little experience or have never used Mathematica before and would like to learn more of the basics for this computer algebra system. As a friendly reminder, don't forget to clear variables in use and/or the kernel.
Finally, the commands in this tutorial are all written in bold black font, while Mathematica output is in regular fonts. This means that you can copy and paste all comamnds into Mathematica, change the parameters and run them. You, as the user, are free to use the scripts to your needs for learning how to use the Mathematica program, and have the right to distribute this tutorial and refer to this tutorial as long as this tutorial is accredited appropriately.
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the second course APMA0330
Return to Mathematica tutorial for the first course APMA0340
Return to the main page for the course APMA0340
Return to the main page for the course APMA0330
Return to Part IV of the course APMA0330
Shooting Method
The idea of shooting method is to reduce the given boundary value problem to several initial value problems. Roughly speaking, we 'shoot' out trajectories in different directions until we find a trajectory that has the desired boundary value. We start with the Dirichlet boundary value problem for a linear differential equation of second order:
Theorem. Consider the Dirichlet boundary value problem for the linear second order differential equation
Example. Consider a harmonic oscillator subject to the Dirichlet boundary conditions
Example. Consider the Dirichlet boundary value problem
Differential Equations of higher order
Fundamental Sets of Solutions
General Solutions
Complex Roots
Reduction of order
Variation of Parameters
Method of Undetermined Coefficients
Operator Methods
Numerical Solutions
Spring Problems
Pendulum
Electric Circuits
Boundary Value Problems
Shooting Method
Finite Difference Schemes
Applications
Return to Mathematica page
Return to the main page (APMA0330)
Return to the Part 1 (Plotting)
Return to the Part 2 (First Order ODEs)
Return to the Part 3 (Numerical Methods)
Return to the Part 4 (Second and Higher Order ODEs)
Return to the Part 5 (Series and Recurrences)
Return to the Part 6 (Laplace Transform)