This
tutorial was made solely for the purpose of education and it was designed
for students taking Applied Math 0330. It is primarily for students who
have very little experience or have never used
Mathematica before and would like to learn more of the basics for this computer algebra system. As a friendly reminder, don't forget to clear variables in use and/or the kernel.
Finally, the commands in this tutorial are all written in bold black font,
while Mathematica output is in normal font. This means that you can
copy and paste all commands into Mathematica, change the parameters and
run them. You, as the user, are free to use the scripts for your needs to learn the Mathematica program, and have
the right to distribute this tutorial and refer to this tutorial as long as
this tutorial is accredited appropriately.
Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0340
Return to the main page for the course APMA0340
Return to the main page for the course APMA0330
Return to Part VI of the course APMA0330
The main advantage of applications of Laplace transformation in differential equations is its easiness dealing
with discontinuous functions. Of course, the Laplace transform does not exist for an arbitrary function, but only
with those that have finite jumps. The algorithm finding a Laplace transform of an intermittent function consists
of two steps:
Rewrite the given piecewise continuous function through shifted Heaviside functions.
Use the shift rule \( {\cal L} \left[ H(t-a)\, f(t-a) \right] = e^{a\lambda}\, {\cal L} \left[ f(t) \right] . \)