![]() |
Differential EquationsBrown University Applied Mathematics |
To solve any non-homogeneous solution, we will need to add the homogeneous solution to the particular solution. The method of Undetermined Coefficients is an easy way to find the particular solution for your final answer. The steps to following this method are generally:
Solve for the particular equation in the form $y_{p} = -y1(t)\int \frac{y2(t)f(t)}{W(t)}dt +y2(t)\int \frac{y1(t)f(t)}{W(t)}dt$
Solve the equation y''-3y'-18y=t
Homogeneous Solution
reset()
eq1 := y''(x)-3*y'(x) -18*y(x)
char_eq1 := r^2 -3*r-18
rsol := solve(%, r)
y1(x) := exp(rsol[2]*x)
y2(x) := exp(rsol[1]*x)
homog := C1*y1(x)+C2*y2(x)
Particular Solution
f(x) := x
wronskian(x) := y1(x)*diff(y2(x), x) - (diff(y1(x), x)*y2(x))
partic := -y1(x)*int((y2(x)*f(x)/wronskian(x)),x) + y2(x)*int((y1(x)*f(x)/wronskian(x)),x)
Final Solution
fullsol := homog+partic
Solve the equation y''+y=1+tan(x) where -pi/2 < x < pi/2
Homogeneous Solution
reset()
eq1 := y''(x)+y(x)
char_eq1 := r^2 +1
rsol := solve(%, r)
y1(x) := exp(rsol[2]*x)
y2(x) := exp(rsol[1]*x)
homog := C1*y1(x)+C2*y2(x)
Particular Solution
assume(x < PI/2)
assume(x > -PI/2)
f(x) := 1+tan(x)
wronskian(x) := y1(x)*diff(y2(x), x) - (diff(y1(x), x)*y2(x))
partic := -y1(x)*int((y2(x)*f(x)/wronskian(x)),x) + y2(x)*int((y1(x)*f(x)/wronskian(x)),x)
simplify(%)
furtherSimplified := 1-cos(x)*ln(sec(x)+tan(x))
Final Solution
fullsol := homog+furtherSimplified
Home |
< Previous |
Next > |