Part 2.2: Motivation


This section presents motivating examples to study systems of ordinary differential equations (ODE for short),
\[ \begin{cases} \dot{y}_1 &= f_1 \left( y_1 , y_2 , \ldots , y_n , t \right) , \\ \dot{y}_2 &= f_2 \left( y_1 , y_2 , \ldots , y_n , t \right) , \\ \cdots & \qquad \cdots \\ \dot{y}_n &= f_n \left( y_1 , y_2 , \ldots , y_n , t \right) , \\ \end{cases} \]
or in vector form
\begin{equation} \label{EqMotiv.1} \dot{\bf y} = {\bf f} \left( {\bf y},t \right) , \end{equation}
where y(t) and f(y, t) are column-vectors:
\[ {\bf y} (t) = \begin{bmatrix} y_1 (t) \\ \vdots \\ y_n (t) \end{bmatrix} = \left[ y_1 (t), \ldots , y_n (t) \right]^{\mathrm{T}} , \qquad {\bf f}({\bf y}, t) = \begin{bmatrix} f_1 \left( y_1 , \ldots , y_n , t \right) \\ \vdots \\ f_n \left( y_1 , \ldots , y_n , t\right) \end{bmatrix} . \]
The system of differential equations \eqref{EqMotiv.1} occurs frequently in particular descriptions of physical phenomena from natural science. Autonomous systems have input function not containing t explicitly: f = f(y). With natural extension of known statements for a single differential equation, we present the following existence and uniqueness theorem.
Theorem: Consider the initial value problem
\begin{equation} \label{EqMotiv.IVP} \dot{\bf y} = {\bf f} \left( {\bf x},t \right) , \qquad \dot{\bf y}(0) = \dot{\bf y}_0 , \end{equation}
where y0 ∈ ℝn. Suppose that f : ℝn → ℝn is a continuously differentiable function. Then there exists a unique solution of the given initial value problem \eqref{EqMotiv.IVP}.
Here overdot stands for the derivative with respect to time variable, \( \dot{y} = {\text d}y/{\text d}t . \) http://homepages.math.uic.edu/~jan/mcs320/mcs320.pdf
We start with motivating examples that you most likely saw in other courses.
Our next example is from mechanics and it requires the application of Euler--Lagrange equations for a conservative case:
\begin{equation} \label{EqMotiv.2} \frac{\text d}{{\text d}t}\,\frac{\partial {\cal L}}{\partial \dot{q}_i} \left( t, {\bf q}(t), \dot{\bf q}(t) \right) = \frac{\partial {\cal L}}{\partial q_i} \left( t, {\bf q}(t), \dot{\bf q}(t) \right) , \qquad i=1,2,\ldots n, \end{equation}
where q = (q1, q2, … , qn) are generalized (canonical) coordinates and the Lagrangian is the difference between the kinetic and potential energy:
\begin{equation} \label{EqMotiv.3} {\cal L} = {\text K} - \Pi . \end{equation}
For a simple autonomous system \( \dot{\bf y} + {\bf f}({\bf y}) = 0, \) with K = \( \dot{\bf y}^2 = \dot{y}^2_1 + \cdots + \dot{y}^2_n \) and \( \Pi = {\bf f}^2 ({\bf y}) , \) we have
\[ \pi_y = \frac{\partial {\cal L}}{\partial \dot{\bf y}} = \left[ \frac{\partial {\cal L}}{\partial \dot{y}_1} , \ldots , \frac{\partial {\cal L}}{\partial \dot{y}_n} \right] = 2\,\dot{\bf y}, \qquad \frac{\partial {\cal L}}{\partial {\bf y}} = 2{\bf f}({\bf y}) \cdot {\bf f}' ({\bf y}) , \]
where πy is the moment canonically conjugated to the variable y. The corresponding Hamiltonian is
\[ {\cal H} = {\mbox K} + \Pi = \pi_y \,\dot{\bf y} - {\cal L} = \dot{\bf y}^2 + {\bf f}^2 ({\bf y}) . \]