
Numerical Methods

• A first order ODE initial value problem:

dy(t)

dt
= f (t, y(t)) (1.1)

y(0) = y0 (1.2)

where f is some function of t and y(t), (e.g. f(t, y(t)) = t2 + sin(y(t))), and y(t) is the
differentiable function that satisfies this equation.

This is called a first order (because the highest derivative is a first derivative, dy(t)
dt

)
ordinary (because the derivative is not a partial derivative) Differential Equation
(obvious!) Initial Value Problem (because the initial value – the value of the function
y(t) at the starting point t = 0 – is specified)

Note: It may seem of limited value to only know how to solve a first order equation,
but in fact this is pretty general. In the equation, y(t) may be a vector, and then this
is a system of first order ODEs. This is extremely general because every higher order
ODE can be written as a system of first order ODEs.

But before we rush in and try to find a solution to this kind of equation, we need to
make sure that there exists a unique solution.

• Definitions

1. Lipschitz Continuity: a function f(t, y(t)) is said to be Lipschitz continuous
with respect to y if there exists a number L > 0 such that

||f(t, y1) − f(t, y2)|| ≤ L||y1 − y2||

for all y1 and y2 in the relevant domain.

Lipschitz continuity is stronger than continuity but weaker than differentiabil-
ity. This means that differentiability implies Lipschitz continuity, and Lipschitz
continuity implies continuity.

2. Stability: If two solutions start close together they will stay close together.

For any ε > 0 there exists δ > 0 such that if |y0− z0| < δ then the solution y(t) of

dy(t)

dt
= f (t, y(t))

y(0) = y0

and the solution z(t) of

dz(t)

dt
= f (t, z(t))

z(0) = z0

will satisfy |y(t)− z(t)| < ε for all 0 ≤ t ≤ T .

1

• Existance and uniqueness of a solution of (1.1):

Theorem If f(t, y) is continuous with respect to t, and Lipschitz continuous with
respect to y, then (1.1) has a unique, stable solution.

• Numerical Solution of an ODE:

The idea behind numerical solutions of a Differential Equation is to replace differentia-
tion by differencing. A computer cannot differentiate but it can easily do a difference.
(Differentiation is a continuous process. Differencing is a discrete process.)

Now we introduce the most important tool that will be used in this class. By the time
this class ends, you’ll be able to do Taylor Expansions in your sleep.

Taylor Series Expansion: y(t + ∆t) = y(t) + y′(t)∆t + O(∆t2).

So:

y′(t) =
y(t + ∆t) − y(t)

∆t
+ O(∆t).

And now we can attempt to solve (1.1) by replacing the derivative with a difference:

y((i + 1)∆t) ≈ y(i∆t) + ∆tf(i∆t, y(i∆t))

Starting with y(0) and stepping forward.

What’s good about this? If the O term is something nice looking, this quantity decays
with ∆t, so if we take ∆t smaller and smaller, this gets closer and closer to the real
value.

What can go wrong? The O term may be ugly. The errors can accumulate as I step
forward in time. Also, even though this may be a good approximation for y′(t) it may
not converge to the right solution.

To answer these questions, let’s look at this scheme in depth:

• Euler Forward Method

From now on, we’ll call yi the numerical approximation to the solution y(i∆t); ti = i∆t.

yi+1 = yi + ∆tf(ti, yi) i = 1, ..., N − 1 (1.3)

This method is explicit because given y0, everything on the right-hand-side is known
and I can immediately get y1 (and so on).

Local Truncation Error: The LTE of the Euler Forward method is defined by
LTE(t) = y(t+∆t)−y(t)

∆t
− f(t, y(t)). i.e. it is the residue when the exact solution of the

ODE (1.1) is plugged into the numerical scheme. If yi is close to y(ti) then the LTE
will be close to zero.

If I don’t know y(t), what is the use of this definition? (and if I do know y(t), what
do I need the method for?!). It turns out that even without explicit knowledge of the

2

solution we can still calculate the LTE and use it as an estimate and control of the
error, by placing certain smoothness assumptions on y(t) and using Taylor Expansions.

For example, in our case:

LTE(t) =
y(t + ∆t)− y(t)

∆t
− f(t, y(t))

= y′(t) +
1

2
y′′(ξ)∆t − f(t, y(t))

=
1

2
y′′(ξ)∆t

If we know that |y′′(t)| ≤ M , then:

|LTE(t)| ≤ 1

2
M∆t

(Quick Remark: How do we get a bound for y′′(t) ? If f is smooth, then y′(t) = f(t, y)
and so |y′(t)| ≤ M . The y′′(t) = d

dt
f(t, y) = ft + fyy

′(t) so it is bounded! In practice,
we just assume that whatever derivative we need is bounded.

• Global Error

How much does the LTE really mean? We are interested in the real error, not the one
at one step.

Global Error
E(ti) = yi − y(ti)

or
E(ti) = y(ti) − yi.

Now we assume a certain amount of smoothness, so

y(ti+1) = y(ti) + ∆tf(ti, y(ti)) + ∆tLTE(ti)

and

yi+1 = yi + ∆tf(ti, yi)

Putting these together we get:

Ei+1 = Ei + ∆t (f(ti, y(ti)) − f(ti, yi)) + ∆tLTE(ti).

Now, let

Li =
f(ti, y(ti)) − f(ti, yi)

y(ti) − yi

.

Since f is Lipschitz continuous with respect to y, this means:

|Li| = |f(ti, y(ti)) − f(ti, yi)

y(ti) − yi

| ≤ L

3

and so

ei+1 = ei(1 + ∆tLi) + LTE(ti)∆t

|ei+1| ≤ |ei|(1 + ∆L) +
1

2
M∆t2 i = 1, ..., N − 1

Lemma: If zi+1 ≤ zi(1 + a∆t) + b Then zi ≤ eai∆t(z0 + b
a∆t

)
Proof:

zi+1 ≤ zi (1 + a∆t) + b

≤ (zi−1(1 + a∆t) + b)(1 + a∆t) + b

≤
·
·
·
≤ z0(1 + a∆t)i+1 + b(1 + (1 + a∆t)... + (1 + a∆t)i)

= z0(1 + a∆t)i+1 + b
(1 + a∆t)i+1 − 1

1 + a∆t− 1

≤ z0(1 + a∆t)i+1 +
b

a∆t
(1 + a∆t)i+1

≤ (1 + a∆t)i+1

(
z0 +

b

a∆t

)

≤ ea∆t(i+1)

(
z0 +

b

a∆t

)

so

zi ≤ eai∆t(z0 +
b

a∆t
)

From this we obtain:

|Ei| ≤ eLi∆t(|E0|+
M

2L
∆t)

Now, if i∆t ≤ T then

|Ei| ≤ eLT (|E0| +
M

2L
∆t)

and since |E0| = 0 we have:

Global Error of Euler Forward:

|Ei| ≤ eLT (
M

2L
∆t).

Compare this with the local error:

|LTE(t)| ≤ 1

2
M∆t

we see that the global error has the same order as the local error with a different
coefficient in the estimates. They are related by the Lipschitz constant L and the final
time T.

4

• Order of a Scheme

Definition The Order of a scheme r, is defined by |Ei| = O(∆tr).

The higher the order of the scheme, the faster the error decays.

• Last time we examined the Euler Forward method:

yi+1 = yi + ∆tf(ti, yi) i = 1, ..., N − 1 (1.4)

We saw that this method has Local Truncation Error: LTE(t) = O(∆t) and Global
Error |Ei| = O(∆t).

The important thing to understand is that the Local Truncation Error is not always
an indicator of what the global error will do. Schemes that have the same order of
LTE and global error are good schemes.

• Taylor Series Methods

To derive these methods we start with a Taylor Expansion:

y(t + ∆t) ≈ y(t) + ∆ty′(t) +
1

2
∆t2y′′(t) + ... +

1

r!
y(r)(t)∆tr.

Now I take the equation and get:

y′(t) = f(t, y(t))

y′′(t) = ft + fyy
′(t)

= ft + fyf

y′′′(t) = ftt +

The scheme is, then:

yi+1 = yi + fi∆t +
fti + fyifi

2
∆t2.

The Taylor series method can be written as

yi+1 = yi + ∆tF (ti, yi,∆t)

and we can easily show that for this scheme

LTE(t) =
y(r+1)(ξ)

(r + 1)!
∆tr = O(∆tr).

(we can assume y(r+1) is bounded by M .)

So the Local Truncation error is reasonable, but what about the global error? Just as
in the Euler Forward case, we can show that

|Ei| ≤
Mr

(r + 1)!

1

L
eLT∆tr

where L is the Lipschitz constant of F .

5

Advantages and Disadvantages of the Taylor Series Method

advantages a) One step, explicit
b) can be high order
c) convergence proof easy

disadvantages Needs the explicit form
of derivatives of f .

• Runge-Kutta Methods

These are still one step methods, but they are written out so that they don’t look
messy:

Second Order Runge-Kutta Methods:

k1 = ∆tf(ti, yi)

k2 = ∆tf(ti + α∆t, yi + βk1)

yi+1 = yi + ak1 + bk2

let’s see how we can chose the parameters a,b, α, β so that this method has the highest
order LTE possible.

k1(t) = ∆tf(t, y(t))

k2(t) = ∆tf(t + α∆t, y + βk1(t)

= ∆t
(
f(t, y(t) + ft(t, y(t))α∆t + fy(t, y(t))βk1(t) + O(∆t2)

)

LTE(t) =
y(t + ∆t)− y(t)

∆t
− a

∆t
f(t, y(t))∆t− b

∆t
(ft(t, y(t))α∆t + fy(t, y(t)βk1(t)

+ f(t, y(t))∆t + O(∆t2)

=
y(t + ∆t)− y(t)

∆t
− af(t, y(t))− bf(t, y(t))− bft(t, y(t))α

− bfy(t, y(t)βf(t, y(t))+ O(∆t2)

= y′(t) +
1

2
∆ty′′(t) − (a + b)f(t, y(t))− ∆t(bαft(t, y(t)) + bβf(t, y(t))fy(t, y(t)) + O(∆t2)

= (1 − a − b)f + (
1

2
− bα)∆tft + (

1

2
− bβ)∆tfyf + O(∆t2)

So we want a = 1 − b, α = β = 1
2b

.

Fourth Order Runge-Kutta Methods:

k1 = ∆tf(ti, yi) (1.5)

k2 = ∆tf(ti +
1

2
∆t, yi +

1

2
k1) (1.6)

k3 = ∆tf(ti +
1

2
∆t, yi +

1

2
k2) (1.7)

k4 = ∆tf(ti + ∆t, yi + k3) (1.8)

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) (1.9)

6

The second order method requires 2 evaluations of f at every timestep, the fourth
order method requires 4 evaluations of f at every timestep. In general: For an rth
order Runge-Kutta method we need S(r) evaluations of f for each timestep,
where

S(r) =





r for r ≤ 4
r + 1 for r = 5 and r = 6
≥ r + 2 for r ≥ 7

Practically speaking, people stop at r = 5.

Advantages of Runge-Kutta Methods

1. One step method – same convergence proof as for Euler.

2. Don’t need to know derivatives of f .

• Multi Step Methods

yi+1 + α1yi + α2yi−1 + ... + αmyi−m+1

∆t
= β0fi+1β1fi + ... + βmfi−m+1

What have we got to gain? Accuracy with fewer function evaluations. But then the
storage cost is high.

What’s the drawback? We need starting values. You can get these by using a one step
method!

Example: A two-step method:

yi+1 − yi−1

∆t
= 2fi.

The LTE is O(∆t2). Is the global error this good? We cannot do the same proof as
the Euler, because this is a two step method.

We need a better way to check if the global error is the same order as the LTE. To be
on the safe side, always take a method from the book!

• Advanced topic: Stability

First, we need some definitions:

1. Stability: A scheme is said to be stable if for fixed T and for every ε > 0 there
exists δ > 0 such that if 0 ≤ i∆t ≤ T and |u0 − v0| < δ then |ui − vi| < ε.

Stability means that if initial conditions are close the numerical solutions must be
close

2. Absolute Stability A scheme is said to be absolutely stably for λδt is, when the
scheme is applied to

y′(t) = λy(t)

with some initial condition y(0) = y0, |yi is bounded as i → ∞, ∆t fixed.

7

3. Characteristic Polynomial: the characteristic polynomial of the multistep
method

yi+1 + α1yi + α2yi−1 + ... + αmyi−m+1

∆t
= β0fi+1β1fi + ... + βmfi−m+1

is
P (λ) = λm + α1λ

m−1 + ... + αm.

Stability is clearly a necessary condition for convergence. In our case, stability is also
sufficient.

Theorem 1 If a scheme is stable and has LTE(t) = O(∆tr) Then it is convergent
with |Ei| = O(∆tr) for 0 ≤ i∆t ≤ T .

Theorem 2 A one-step method yi+1 = yi + F (ti, yi,∆t) is stable is F is Lipschitz
continuous with respect to y.

Theorem 3 The multistep method is stable iff the following root condition is satisfied:
If λ is a root of the characteristic polynomial P (λ) then either |λ| < 1 or |λ| = 1 and
is a simple root.

• Implicit vs. Explicit methods and stiff problems: Let’s look at the simple
problem y′ = ay where a is a negative number with a large magnitude, e.g. a = −1000.
Clearly, the exact solution is then y = Ceay which is a rapidly decaying function. Let’s
see what Euler’s method does to this:

yn+1 = yn + ∆tf(yn)

yn+1 = yn + ∆tayn

yn+1 = (1 + a∆t)yn

If we start this up from y0 we see that

y1 = (1 + a∆t)y0

y2 = (1 + a∆t)y1

= (1 + a∆t)2 y0

y3 = (1 + a∆t)y2

= (1 + a∆t)3 y0

or, in general
yn = (1 + a∆t)n y0.

Now, since the exact solution is rapidly decaying, we expect that the numerical solution
should also decay – i.e. we need |1 + a∆t| ≤ 1. Is this always true? Well, since a < 0
and ∆t > 0 we always have

1 + a∆t ≤ 1.

8

But we also need
1 + a∆t ≥ −1

and this is only true if

∆t ≤ 2

a
=

1

500
.

This is a very limiting time-step! In fact, if you don’t observe this time-step your
numerical solution will blow up! A problem that exhibits such rapid decay is called a
stiff problem, and has a time-step restriction that is quite severe.

Can we avoid it? Yes, but for this you have to use an implicit method. In such a
method you will need to solve a problem of the form g(yn+1) = 0 for yn+1, which may
be unpleasant . . . (MATLAB will do it for you if necessary, and we will only do easy
problems we can solve ourselves).

Instead of using Euler’s method, we can use the implicit Euler’s method:

yn+1 = yn + ∆tf(yn+1)

yn+1 = yn + ∆tayn+1

(1 − a∆t)yn+1 = yn

yn+1 =
1

1 − a∆t
yn

If we start this up from y0 we see that

yn =
(

1

1 − a∆t

)n

y0.

Now, is this quantity decaying?

∣∣∣∣
1

1 − a∆t

∣∣∣∣ ≤ 1

yes, because this quantity is always positive and 1 − a∆t > 1.

So an implicit method can be used, with any size timestep that would be ok for
accuracy.

9

