
Applied Math 9

Handout 2 for Math of Music: Natural Modes of Vibration and
Simple Solutions to the Wave Equation

In the last handout we derived the partial differential equation satisÞed
by a vibrating string. In this handout we discuss the simplest solutions to
the wave equation, the so-called �natural modes.� An interesting web site
which has animations of the natural modes for the string and drum head is:
http://www.gmi.edu/�drussell/Demos.html. In particular, one should look
in the section titled Vibrational Modes of Continuous Systems.

The wave equation is usually written

utt(x, t) = c
2uxx(x, t),

where c2 = T/ρ. Since the string has zero displacement at x = 0 and x = L,
we assume that these boundary conditions hold at all times:

u(0, t) = u(L, t) = 0 for all t ≥ 0.

A solution to this equation is a function u(x, t) deÞned for 0 ≤ x ≤ L and
t ≥ 0 that satisÞes the boundary conditions and the differential equation for
all 0 < x < L and t ≥ 0.

We attack the problem of solving this equation in a general setting by
Þrst looking for certain especially simple solutions, which are called the
natural modes. More precisely, we look for solutions in what is called the
separated form. This means we try to Þnd solutions of the form

u(x, t) = f(x)g(t).

Suppose that f(x)g(t) is in fact a solution. What conditions does this
impose on f and g? We assume that both functions have two continuous
derivatives. If we compute the partial derivatives of such a function, and
plug into the equation, we arrive at

f(x)gtt(t) = c
2fxx(x)g(t),

and unless g is identically equal to zero, the boundary condition implies

f(0) = f(L) = 0.
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Now the equation f(x)gtt(t) = c
2fxx(x)g(t) is more restrictive than it looks

at Þrst glance. Without worrying about dividing by zero, suppose we divide
both sides by f(x)g(tú). The resulting equation is

gtt(t)

g(t)
= c2

fxx(x)

f(x)
.

Now a function of t can be equal to a function of x only if both functions
are actually (the same) constant! Let us suppose that

gtt(t)

g(t)
= A, c2

fxx(x)

f(x)
= A

for some number A. What does this tell us about f and g?
We look at g Þrst. From the homework, you know that sinλx is always

a solution to
fxx(x) + λ

2f(x) = 0

and that the boundary conditions

f(0) = 0, f(L) = 0

restrict λ to be of the form nπ/L for a positive integer n. This means that
if we want to solve

c2
fxx(x)

f(x)
= A,

which we rewrite as

fxx(x)− A

c2
f(x) = 0,

then a solution to this equation and the boundary conditions can be found
when −A/c2 = n2π2/L2, or A = −c2n2π2/L2. Let us designate the corre-
sponding solution by

f (n)(x) = sin
nπ

L
x.

This tells us possible values for A. If we Þx such a value, and consider the
equation for g, we Þnd

gtt(t)− c
2n2π2

L2
g(t) = 0.

It is easy to check that

sin
cnπ

L
t and cos

cnπ

L
t
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are both solutions to this equation. In fact, as you will see in a differential
equations course later on, the general solution to this equation is

g(n)(t) = a sin
cnπ

L
t+ b cos

cnπ

L
t,

where a and b are arbitrary constant.

The functions f (n)(x) are the natural modes of vibration of the string.
The Þrst few modes are

sin
π

L
x, sin

2π

L
x, sin

3π

L
x.

They give the special shapes that are preserved by the wave equation if it
starts off with that shape (eigenshapes, or eigenfunctions). The function
f (n)(x) must be paired with the corresponding function g(n)(t), which de-
scribes the frequency of oscillations in the time variable. For example, the
solution

u(x, t) = sin
π

L
x cos

cπ

L
t

starts off at time t = 0 with displacement u(x, 0) = sin πLx, velocity ut(x, 0) =
0 (since the derivative of cos cπL t at t = 0 is 0), and over 1 second oscillates
approximately (cπ/L)/(2π) = c/2L times. This gives the lowest possible
frequency of the string, with the others being the multiples nc/2L. The
solution

u(x, t) = sin
π

L
x sin

cπ

L
t

starts off at time t = 0 with displacement 0, velocity ut(x, 0) =
cπ
L sin

π
Lx

(since the derivative of sin cπL t at t = 0 is cπ
L ), and oscillates at the same

frequency.
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