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Handout 2 for Markov Chains: Some Basic Properties

In class we discussed several examples of discrete state random processes.
The state space is deÞned to be the set of values the processes can take, and
among the examples discussed in class were

S = {. . . ,−1, 0, 1, . . .} (the integers),

S =

½
. . . ,

1

c2
,
1

c
, 1, c, c2, . . .

¾
(for some c > 1),

S = {a, b, c, . . . , y, z,A,B, . . . , Z, ., !, ?, , } .
We will study Þnite state Markov chains, and to simplify notation we

will always label the state space as

S = {1, 2, . . . ,M} .
A key item in the description of a Markov chain is the set of transi-

tion probabilities. These quantities are conditional probabilities, and for a
Markov chain Xn (with n denoting the discrete time index) are deÞned for
i ∈ S, j ∈ S by

pij = P {Xn+1 = j|Xn = i} .
We will also assume that these conditional probabilities do not depend on
n, in which case the chain is said to be stationary.

The Markov property means that even if you tell me everything that
lead up to where the process is at time n, all that matters for the future
evolution is the position of the process at time n. Thus

P {Xn+1 = j|Xn = i,X0 = s0, X1 = s1, . . . , Xn−1 = sn−1}
= P {Xn+1 = j|Xn = i}
= pij,

no matter what s0,s1, . . . , sn−1 are. It will be convenient to work with the
matrix

P =

 p11 · · · p1M
...

...
pM1 · · · pMM

 .
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Thus the starting state corresponds to the row value and the ending state
corresponds to the column value, and pij is the probability that in one step
you get to j, given that you start at i. Since they are conditional probablil-
ities, each row i of this matrix must satisfy

pij ≥ 0, j ∈ S,

and
MX
j=1

pij = 1.

Example. Consider the random walk where the walker is not allowed to go
outside at the end points 1 and M . Then

P =



1/2 1/2 0 · · · 0
1/2 0 1/2 0 · · · 0
0 1/2 0 1/2 0 · · · 0
...

...
0 · · · 0 1/2 0 1/2
0 · · · 0 1/2 1/2


.

How can we compute the n-step transition probabilities, i.e.,

p
(n)
ij = P {Xl+n = j|Xl = i}?

We will use two elementary properties of probabilities. First, if events E1
and E2 are disjoint (i.e., both can never happen simultaneously, and often
written E1 ∩ E2 = ∅), then

P (E1 or E2) = P (E1) + P (E2)

(E1 or E2 is often written E1 ∩ E2 = ∅). The second fact is that for any
events, the deÞnition of conditional probability asserts that P (E1 and E2) =
P (E1|E2)P (E2). Consider n = 2. Since the process must be somewhere at
time l + 1,

p
(2)
ij = P {Xl+2 = j|Xl = i}

=
MX
k=1

P {Xl+2 = j and Xl+1 = k|Xl = i}
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=
MX
k=1

P {Xl+2 = j|Xl+1 = k and Xl = i} P { Xl+1 = k|Xl = i}

=
MX
k=1

P {Xl+2 = j|Xl+1 = k} P { Xl+1 = k|Xl = i}

=
MX
k=1

pkjpik .

¿From the deÞnition of matrix multiplication, we should recognize this as
the ijth entry of PP. Thus if P (2) is the matrix of two step transition
probabilities, then P (2) = PP. We write P 2 for PP . A similar argument
shows P (3) = P 3 and in general P (n) = Pn.

To compute the distribution of the chain at time n, we need to specify its
distribution at some earlier time. Typically, this earlier time is 0. Suppose
we let

vi = P {X0 = i} ,
and then let v = (v0, v1, . . . , vM ) (a row vector). We can compute the dis-
tribution of the chain at time n:

P {Xn = j} =
MX
k=1

P {Xn = j and X0 = k}

=
MX
k=1

P {Xn = j|X0 = k} P { X0 = k}

=
MX
k=1

p
(n)
kj vk.

If we arrange the values P {Xn = j} as a row vector, then the last equation
tells us that this vector equals

vPn.

Example. Consider the random walk with M = 5. Then

P =


.5 .5 0 0 0
.5 0 .5 0 0
0 .5 0 .5 0
0 0 .5 0 .5
0 0 0 .5 .5

 .

3



The 4-step transition matrix is

P 4 =


.375 .25 .25 .0625 .0625
.25 .375 .0625 .25 .0625
.25 .0625 .375 .0625 .25

.0625 .25 .0625 .375 .25

.0625 .0625 .25 .25 .373

 .

If the distribution at time 0 is v =(0, .3, 0, 0, .7), then the distribution at
time 4 is vP 4, which equals

(0.1187, 0.1563, 0.1937, 0.2500, 0.2812).
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