Applied Math 9

Problem Set 5 for Zero Sum Games

1. Recall that an $n \times n$ dimensional matrix A defines a linear mapping from n dimensional space to itself via $\mathbf{y} = A\mathbf{x}$. Which of the following mappings are linear, and hence representable by a matrix? For the linear mappings, find the corresponding matrix.

$$\mathbf{y}^{T} = T(x_{1}, x_{2}, x_{3}) = (x_{1} + x_{2} + x_{3}, 0, 0) \mathbf{y}^{T} = T(x_{1}, x_{2}, x_{3}) = (x_{2}, x_{3}, x_{1}) \mathbf{y}^{T} = T(x_{1}, x_{2}, x_{3}) = (x_{1} + x_{2} + x_{3}, 1, -1) \mathbf{y}^{T} = T(x_{1}, x_{2}, x_{3}) = (x_{1}x_{2}x_{3}, 0, 0)$$

- 2. In class we noted a fundamental result, which is that when an $n \times n$ dimensional matrix A has nonzero determinant, then the equation $\mathbf{y} = A\mathbf{x}$ always has a solution. This means that the mapping from \mathbf{x} to \mathbf{y} is one to one and onto, and so the mapping has an *inverse*. We will use Matlab to calculate inverses, and later on mention the technique of *Gaussian elimination* to compute an inverse by hand. However, it would be nice to know if the inverse mapping is linear, so that we can describe it by a matrix. What do you think?
- 3. What is the determinant of each of the following $n \times n$ square matrices?

$$A = (a_{ij}), \text{ where } a_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

(the so-called *identity* matrix, usually written I),

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & -1 & -3 \end{array}\right)$$

(a particular lower triangular matrix),

$$A = (a_{ij}), \text{ where } a_{ij} = \begin{cases} a_i & i = j \\ 0 & i < j \end{cases}$$

(a general lower triangular matrix). You should express the determinant for the last matrix in terms of the a_i . Note that not all the entries of the matrix are specified.

4. (Games in a random environment.) Consider the following game. A referee tosses a coin, and show the outcome to Player 1. Player 1 can either (i) pass and pay \$5 to Player 2, or (ii) continue. In case (i), the game terminates. In case (ii), Player 2 can either (i) pass, and pay Player 1 \$5, or (ii) call. In case (ii), heads means Player 2 pays \$10 to Player 1, and tails means Player 1 pays \$10 to Player 2. What are the pure strategies for the two players? Here, a pure strategy for Player 1 is an action taken after seeing the coin. Thus Player 1 has four pure strategies. Player 2 has two pure strategies, which depend on the action of Player 1. Write down the payoff matrix, using expected values for entries whose outcome depends on the coin.