Applied Mathematics 120, Spring of 2005

Derivation of the Dynamic Programming Equation for an Example Done in Class

A detailed derivation of the dynamic programming equation. The key is that we can think of the final position x_N in two ways. One is as a function of (u_n, \ldots, u_{N-1}) and x_n , and the second is as a function of $(u_{n+1}, \ldots, u_{N-1})$ and x_{n+1} , which itself depends on u_n and x_n :

$$\begin{split} V_{n}(x_{n}) \\ &= \max_{(u_{n},\dots,u_{N-1})} \left[\sum_{j=n}^{N-1} B\left[1-u_{j}\right] + g\left(x_{N}\right) \right] \\ &= \max_{(u_{n},\dots,u_{N-1})} \left[B\left[1-u_{n}\right] + \sum_{j=n+1}^{N-1} B\left[1-u_{j}\right] + g\left(x_{N}\left[x_{n},u_{n},\dots,u_{N-1}\right]\right) \right] \\ &= \max_{(u_{n},\dots,u_{N-1})} \left[B\left[1-u_{n}\right] + \sum_{j=n+1}^{N-1} B\left[1-u_{j}\right] + g\left(x_{N}\left[x_{n+1}\left[x_{n},u_{n}\right],u_{n+1},\dots,u_{N-1}\right]\right) \right] \\ &= \max_{u_{n}} \left[B\left[1-u_{n}\right] + \max_{(u_{n+1},\dots,u_{N-1})} \left[\sum_{j=n+1}^{N-1} B\left[1-u_{j}\right] + g\left(x_{N}\left[x_{n+1}\left[x_{n},u_{n}\right],u_{n+1},\dots,u_{N-1}\right]\right) \right] \right] \\ &= \max_{u_{n}} \left[B\left[1-u_{n}\right] + \max_{(u_{n+1},\dots,u_{N-1})} \left[\sum_{j=n+1}^{N-1} B\left[1-u_{j}\right] + g\left(x_{N}\left[x_{n}(x_{n},u_{n}),u_{n+1},\dots,u_{N-1}\right]\right) \right] \right] \\ &= \max_{u_{n}} \left[B\left[1-u_{n}\right] + \max_{(u_{n+1},\dots,u_{N-1})} \left[\sum_{j=n+1}^{N-1} B\left[1-u_{j}\right] + g\left(x_{N}\left[f\left(x_{n},u_{n}\right),u_{n+1},\dots,u_{N-1}\right]\right) \right] \right] \end{split}$$

The first equality is the definition of $V_n(x_n)$, the second separates out the benefit for the first step after n and writes x_N as a function of (u_n, \ldots, u_{N-1}) and x_n , the third writes x_N as a function of $(u_{n+1}, \ldots, u_{N-1})$ and $x_{n+1} [x_n, u_n]$, the fourth uses that the one step benefit does not depend on u_{n+1}, \ldots, u_{N-1} , the fifth uses the formula for how we get x_{n+1} from x_n, u_n , and the last uses the definition of V_{n+1} .