Matrix Algebra

This page presents some topics from Linear Algebra needed for construction of solutions to systems of linear algebraic equations and some applications. We use matrices and vectors as essential elements in obtaining and expressing the solutions.

Spectral Decomposition

Spectral Decomposition

Originally, spectral decomposition was developed for symmetric or self-adjoint matrices. Following tradition, we present this method for symmetric/self-adjoint matrices, and later expand it for arbitrary matrices.

A matrix A is said to be unitary diagonalizable if there is a unitary matrix U such that \( {\bf U}^{\ast} {\bf A}\,{\bf U} = {\bf \Lambda} , \) where Λ is a diagonal matrix and \( {\bf U}^{\ast} = {\bf U}^{-1} . \) A matrix A is said to be orthogonally diagonalizable if there is an orthogonal matrix P such that \( {\bf P}^{\mathrm T} {\bf A}\,{\bf P} = {\bf \Lambda} , \) where Λ is a diagonal matrix and \( {\bf P}^{\mathrm T} = {\bf P}^{-1} . \)

Theorem: The matrix A is orthogonally diaginalisable if and only if A is symmetric (\( {\bf A} = {\bf A}^{\mathrm T} \) ).

Theorem: The matrix A is unitary diaginalisable if and only if A is normal (\( {\bf A}\, {\bf A}^{\ast} = {\bf A}^{\ast} {\bf A} \) ). ■

Example. The matrix

\[ {\bf A} = \begin{bmatrix} 1&{\bf j}&0 \\ {\bf j}&1&0 \\ 0&0&1 \end{bmatrix} \]
is symmetric, normal, but not self-adjoint. Another matrix
\[ {\bf B} = \begin{bmatrix} 2&1 \\ -1&2 \end{bmatrix} \]
is normal, but not self-adjoint. Therefore, both matrices are unitary diagonalizable but not orthogonally diagonalizable.

Example. Consider a symmetric matrix

\[ {\bf A} = \begin{bmatrix} 2&1&1 \\ 1&2&1 \\ 1&1&2 \end{bmatrix} \]
that has the characteristic polynomial \( \chi_{A} (\lambda ) = \det \left( \lambda {\bf I} - {\bf A} \right) = \left( \lambda -1 \right)^2 \left( \lambda -4 \right) .\) Thus, the distinct eigenvalues of A are \( \lambda_1 =1, \) which has geometrical multiplicity 2, and \( \lambda_3 =4. \) The corresponding eigenvectors are
\[ {\bf u}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} , \quad {\bf u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \qquad \mbox{and} \qquad {\bf u}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} . \]
The vectors \( {\bf u}_1 , \ {\bf u}_2 \) form the basis for the two-dimensional eigenspace corresponding \( \lambda_1 =1 , \) while \( {\bf u}_3 \) is the eigenvectors corresponding to \( \lambda_3 =4 . \) Applying the Gram--Schmidt process to \( {\bf u}_1 , \ {\bf u}_2 \) yields the following orthogonal basis:
\[ {\bf v}_1 = {\bf u}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad \mbox{and} \quad {\bf v}_2 = {\bf u}_2 - \frac{\langle {\bf u}_2 , {\bf v}_1 \rangle}{\| {\bf v}_1 \|^2} \, {\bf v}_1 = \frac{1}{2} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \]
because \( \langle {\bf u}_2 , {\bf u}_1 \rangle = -1 \) and \( \| {\bf v}_1 \|^2 =2 . \) Normalizing these vectors, we obtain orthonormal basis:
\[ {\bf q}_1 = \frac{{\bf v}_1}{\| {\bf v}_1 \|} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} , \quad {\bf q}_2 = \frac{{\bf v}_2}{\| {\bf v}_2 \|} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} , \quad {\bf q}_3 = \frac{{\bf v}_3}{\| {\bf v}_3 \|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} . \]
Finally, using \( {\bf q}_1 ,\ {\bf q}_2 , \ {\bf q}_3 \) as column vectors, we obtain the unitary (it is actually orthogonal because its entries are real) matrix
\[ {\bf U} = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0& \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} , \]
which orthogonally diagonalizes A. As a check, we confirm
\[ {\bf U}^{\mathrm T} {\bf A} \,{\bf U} = \begin{bmatrix} \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \, \begin{bmatrix} 2&1&1 \\ 1&2&1 \\ 1&1&2 \end{bmatrix} \, \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0& \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} = \begin{bmatrix} 1 &0&0 \\ 0 &1&0 \\ 0 &0&4 \end{bmatrix} , \]

sage: M.rank()
sage: M.right_nullity()

Theorem: Let A be a symmetric or normal \( n \times n \) matrix with eigenvalues \( \lambda_1 , \ \lambda_2 , \ \ldots , \ \lambda_n \) and corresponding eigenvectors \( {\bf u}_1 , \ {\bf u}_2 , \ \ldots , \ {\bf u}_n . \) Then

\[ {\bf A} = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ {\bf u}_1 & {\bf u}_2 & \cdots & {\bf u}_n \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix} \, \begin{bmatrix} \lambda_1 &&&0 \\ &\lambda_2 && \\ &&\ddots & \\ 0&&& \lambda_n \end{bmatrix} \, \begin{bmatrix} \longleftarrow & {\bf u}_1 & \longrightarrow \\ \longleftarrow & {\bf u}_2 & \longrightarrow & \\ \vdots & \\ \longleftarrow & {\bf u}_n & \longrightarrow \end{bmatrix} = \sum_{i=1}^n \lambda_i {\bf u}_i {\bf u}_i^{\ast} , \]
which is called spectral decomposition for a symmetric/ normal matrix A. ■

The term was cointed around 1905 by a German mathematician David Hilbert (1862--1942). Denoting the rank one projection matrix \( {\bf u}_i {\bf u}_i^{\ast} \) by \( {\bf E}_i = {\bf u}_i {\bf u}_i^{\ast} , \) we obtain spectral decomposition of A:
\[ {\bf A} = \lambda_1 {\bf E}_1 + \lambda_2 {\bf E}_2 + \cdots + \lambda_n {\bf E}_n . \]
This formular allows one to define a function of a square symmetric/self-adjoint matrix:
\[ f\left( {\bf A} \right) = f(\lambda_1 )\, {\bf E}_1 + f(\lambda_2 )\, {\bf E}_2 + \cdots + f(\lambda_n )\,{\bf E}_n \]
because the matrices \( {\bf E}_k , \quad k=1,2,\ldots n, \) are projection matrices:
\[ {\bf E}_i {\bf E}_j = \delta_{i,j} {\bf E}_i = \begin{cases} {\bf E}_i , & \mbox{ if } i=j, \\ {\bf 0} , & \mbox{ if } i \ne j , \end{cases} \qquad i,j =1,2,\ldots n. \]

Example. Consider a self-adjoint 2-by-2 matrix

\[ {\bf A} = \begin{bmatrix} 1 &2+{\bf j} \\ 2- {\bf j} & 5\end{bmatrix} , \]
where \( {\bf j}^2 =-1 . \) We have \( {\bf S}^{\ast} {\bf A} {\bf S} = {\bf S}^{-1} {\bf A} {\bf S} = {\bf \Lambda} \) for the matrices
\[ {\bf S} = \begin{bmatrix} \left( 2+{\bf j} \right) / \sqrt{6} & \left( 2+{\bf j} \right) / \sqrt{30} \\ - 1/\sqrt{6} & 5\sqrt{30} \end{bmatrix} \quad \mbox{and} \quad {\bf \Lambda} = \begin{bmatrix} 0&0 \\ 0& 6 \end{bmatrix} . \]
Here column vectors in matrix S are normalized eigenvectors corresponding eigenvalues \( \lambda_1 =0 \quad \mbox{and} \quad \lambda_2 =6 . \)

Therefore, the spectral decomposition of A becomes \( {\bf A} = 0\,{\bf E}_1 + 6\,{\bf E}_2 , \) which is clearly matrix A itself.

In our case, projection matrices are

\[ {\bf E}_1 = \frac{1}{6} \begin{bmatrix} 5 & -2 - {\bf j} \\ -2+{\bf j} & 1 \end{bmatrix} , \qquad {\bf E}_2 = \frac{1}{6} \begin{bmatrix} 1 &2+{\bf j} \\ 2- {\bf j} & 5\end{bmatrix} = \frac{1}{6}\, {\bf A} . \]
It is easy to check that
\[ {\bf E}_1^2 = {\bf E}_1 , \qquad {\bf E}_2^2 = {\bf E}_2 , \qquad \mbox{and} \qquad {\bf E}_1 {\bf E}_2 = {\bf 0} . \]
The exponential matrix-function is complex-valued:
\[ e^{{\bf A}\,t} = {\bf E}_1 + e^{6t} \,{\bf E}_2 . \]
We can also define other matrix-valued functions:
\[ \sqrt{\bf A} = \frac{\pm 1}{\sqrt{6}} \, {\bf A} \qquad \mbox{and} \qquad \cos \left( t\,\sqrt{\bf A} \right) = {\bf E}_1 + \cos \left( t\,\sqrt{6} \right) {\bf E}_2 . \]
So we see that the given matrix has at least two distinct square roots.
sage: M.rank()
sage: M.right_nullity()

Example. Consider a symmetric 3-by-3 matrix from the previous example

\[ {\bf A} = \begin{bmatrix} 2&1&1 \\ 1&2&1 \\ 1&1&2 \end{bmatrix} . \]
Its spectral decomposition is \( {\bf A} = 1\,{\bf E}_1 + 1\,{\bf E}_2 + 4\,{\bf E}_3 , \) where the projection matrices \( {\bf E}_i = {\bf q}_i {\bf q}_i^{\ast} \) are obtained from the orthonormal eigenvectors:
\begin{align*} {\bf E}_1 &= \frac{1}{6} \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} \left[ -1 \ -1 \ 2 \right] = \frac{1}{6} \begin{bmatrix} 1&1& -2 \\ 1&1& -2 \\ -2&-2& 4 \end{bmatrix} , \\ {\bf E}_2 &= \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \left[ -1 \ 1 \ 0 \right] = \frac{1}{2} \begin{bmatrix} 1&-1&0 \\ -1&1&0 \\ 0&0&0 \end{bmatrix} , \\ {\bf E}_3 &= \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \left[ 1 \ 1 \ 1 \right] = \frac{1}{3} \begin{bmatrix} 1&1& 1 \\ 1&1& 1 \\ 1&1& 1 \end{bmatrix} . \end{align*}
Indeed, these diagonalizable matrices satisfy the following relations:
\[ {\bf E}_1^2 = {\bf E}_1 , \quad {\bf E}_2^2 = {\bf E}_2 , \quad {\bf E}_3^2 = {\bf E}_3 , \quad {\bf E}_1 {\bf E}_2 = {\bf 0} , \quad {\bf E}_1 {\bf E}_3 = {\bf 0} , \quad {\bf E}_3 {\bf E}_2 = {\bf 0} , \]
and they all have eigenvalues \( \lambda = 1, 0, 0 . \) Using this spectral decomposition, we define two matrix-functions corresponding to \( {\Phi}(\lambda ) = \cos \left( \sqrt{\lambda} \,t \right) \) and \( {\Psi}(\lambda ) = \frac{1}{\sqrt{\lambda}} \,\sin \left( \sqrt{\lambda} \,t \right) \) that do not depend on the branch of the choisen square root:
\begin{align*} {\bf \Phi} (t) &= \cos \left( \sqrt{\bf A} \,t \right) = \cos t\, {\bf E}_1 + \cos t\, {\bf E}_2 + \cos (2t) \,{\bf E}_3 = \frac{\cos t}{3} \, \begin{bmatrix} 2&-1&-1 \\ -1&2&-1 \\ -1&-1& 2 \end{bmatrix} + \frac{\cos 2t}{3} \begin{bmatrix} 1&1& 1 \\ 1&1& 1 \\ 1&1& 1 \end{bmatrix} , \\ {\bf \Psi} (t) &= \frac{1}{\sqrt{\bf A}} \,\sin \left( \sqrt{\bf A} \,t \right) = \sin t\, {\bf E}_1 + \sin t\, {\bf E}_2 + \frac{\sin (2t)}{2} \,{\bf E}_3 = \frac{\sin t}{3} \, \begin{bmatrix} 2&-1&-1 \\ -1&2&-1 \\ -1&-1& 2 \end{bmatrix} + \frac{\sin 2t}{6} \begin{bmatrix} 1&1& 1 \\ 1&1& 1 \\ 1&1& 1 \end{bmatrix} . \end{align*}
These matrix-functions are solutions of the following initial value problems for the second order matrix differential equations:
\begin{align*} & \ddot{\bf \Phi}(t) + {\bf A}\,{\bf \Phi} (t) ={\bf 0} , \qquad {\bf \Phi}(0) = {\bf I}, \quad \dot{\bf \Phi}(0) = {\bf 0}, \\ &\ddot{\bf \Psi}(t) + {\bf A}\,{\bf \Phi} (t) ={\bf 0} , \qquad {\bf \Phi}(0) = {\bf 0}, \quad \dot{\bf \Psi}(0) = {\bf I} . \end{align*}
Since the given matrix A is positive definite, we can define four square roots:
\begin{align*} {\bf R}_1 &= {\bf E}_1 + {\bf E}_2 + 2\,{\bf E}_3 = \frac{1}{3} \begin{bmatrix} 4&1&1 \\ 1&4&1 \\ 1&1&4 \end{bmatrix} , \\ {\bf R}_2 &= {\bf E}_1 + {\bf E}_2 - 2\,{\bf E}_3 = \begin{bmatrix} 0&-1&-1 \\ -1&0&-1 \\ -1&-1&0 \end{bmatrix} , \\ {\bf R}_3 &= {\bf E}_1 - {\bf E}_2 + 2\,{\bf E}_3 = \frac{1}{3} \begin{bmatrix} 1&4&1 \\ 4&1&1 \\ 1&1&4 \end{bmatrix} , \\ {\bf R}_4 &= -{\bf E}_1 + {\bf E}_2 + 2\,{\bf E}_3 = \begin{bmatrix} 1&0&1 \\ 0&1&1 \\ 1&1&0 \end{bmatrix} , \end{align*}

and four others are just negative of these four; so total number of square roots is 8. Note that we cannot obtain \( {\bf R}_3 \) and \( {\bf R}_4 \) using neither Sylvester's method nor the Resolvent method because they are based on the minimal polynomial \( \psi (\lambda ) = (\lambda -1)(\lambda -4) . \)

sage: M.rank()
sage: M.right_nullity()

We expand spectral decomposition for arbitary square matrices. Let \( f (\lambda ) \) be an analytic function in a neighborhood of the origin and A be a square \( n \times n \) matrix. We choose the origin as an example; application of the spectral decomposition requirs functions to be expressed as convergent power series in neighborhoods of every eigenvalue. Using a Maclaurin series

\[ f(\lambda ) = f_0 + f_1 \lambda + f_2 \lambda^2 + \cdots + f_k \lambda^k + \cdots = \sum_{k\ge 0} f_k \lambda^k , \]
we can define the matrix-valued function \( f ({\bf A} ) \) as
\[ f({\bf A} ) = \sum_{k\ge 0} f_k {\bf A}^k . \]
Let \( \psi (\lambda ) \) be a minimal polynomial of degree m for the matrix A. Then every power \( {\bf A}^p \) of matrix A can be expressed as a polynomial of degree not higher than \( m-1. \) Therefore,
\[ f({\bf A} ) = \sum_{j= 0}^{m-1} b_j {\bf A}^j , \]
where coefficients \( b_j , \quad j=0,1,\ldots , m-1; \) should satisfy the following equations
\[ f(\lambda_k ) = \sum_{j= 0}^{m-1} b_k \,\lambda_k^j , \]
for each eigenvalue \( \lambda_k , \quad k=1,2,\ldots , s , \) where s is the number of distinct eigenvalues. If the eigenvalue \( \lambda_k \) is of multiplicity \( m_k \) in the minimal polynomial \( \psi (\lambda ) , \) then we need to add \( m_k -1 \) auxiliary algebraic equations
\[ \left. \frac{{\text d}^p f(\lambda )}{{\text d} \lambda^p} \right\vert_{\lambda = \lambda_k} = \left. \frac{{\text d}^p}{{\text d} \lambda^p} \, \sum_{j= 0}^{m-1} b_k \,\lambda_k^j \right\vert_{\lambda = \lambda_k} , \quad p=1,2,\ldots , m_k -1 . \]

Example. Consider a diagonalizable 4-by-4 matrix

\[ {\bf A} = \begin{bmatrix} -4&7&1&4 \\ 6&-16&-3&-9 \\ 12&-27&-4&-15 \\ -18&43&7&24 \end{bmatrix} . \]
Its characteristic polynomial is
\[ \chi (\lambda ) = \det \left( \lambda {\bf I} - {\bf A} \right) = \lambda \left( \lambda -2 \right) \left( \lambda +1 \right)^2 , \]
but its minimal polynomial is a product of simple terms:
\[ \psi (\lambda ) = \det \left( \lambda {\bf I} - {\bf A} \right) = \lambda \left( \lambda -2 \right) \left( \lambda +1 \right) . \]
Therefore, matrix A is diagonalizable because its minimal polynomail is a product of simple terms, and we don't need to find eigenspaces.
sage: M.rank()
sage: M.right_nullity()

Example. Consider a nondiagonalizable 3-by-3 matrix

\[ {\bf A} = \begin{bmatrix} -4&7&1&4 \\ 6&-16&-3&-9 \\ 12&-27&-4&-15 \\ -18&43&7&24 \end{bmatrix} . \]
sage: M.rank()
sage: M.right_nullity()

Table Of Contents

Previous topic

Matrix Algebra

Next topic

Systems of linear ODEs