AM 034 — Applied Mathematics - II

Brown University Homework, Set 5

Spring 2022 Due March 16

For each of the following matrices,

$\begin{bmatrix} -2 \\ c \end{bmatrix}$	1]	$\begin{bmatrix} -3 \\ -3 \end{bmatrix}$	-4],	$\begin{bmatrix} 3\\ - \end{bmatrix}$	$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -5 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} -6 \end{bmatrix}$	-8],	$\begin{bmatrix} -2 \end{bmatrix}$	-4]	$\begin{bmatrix} 7 \\ 2 \end{bmatrix}$	1]
6	3,	5	1,	5	1,	8	3,	5	6,	4	6,	6	6,

consider the constant coefficient vector differential equation

$$\dot{\mathbf{y}}(t) = \mathbf{A} \mathbf{y}(t).$$

5.1 (30 points) Determine the type of critical point at the origin

- 5.2 (30 points) Determine the stability of the critical point at the origin.
- **5.3** (40 points) **Plot** a phase portrait (direction field along with some solutions) to confirm your answers in two previous parts. If it is a node or saddle point, add the graph of the corresponding separatrix to your plot.

Please, send your code as attachement in a separate file—I don't need your pictures.

You may fi	nd the foll	owing tabl	e useful:
------------	-------------	------------	-----------

Eigenvalues	Type of Critical Point	Stability
$\lambda_1 > \lambda_2 > 0$	Nodal source (node)	Unstable
$\lambda_1 < \lambda_2 < 0$	Nodal sink (node)	Asymptotically stable
$\lambda_1 < 0 < \lambda_2$	Saddle point	Unstable
$\lambda_1 = \lambda_2 > 0,$		
diagonal matrix	Proper node/star point	Unstable
$\lambda_1 = \lambda_2 < 0,$		
diagonal matrix	Proper node/star point	Asymptotically stable
$\lambda_1 = \lambda_2 > 0,$		
missing eigenvector	Improper/degenerate node	Unstable
$\lambda_1 = \lambda_2 < 0,$		
missing eigenvector	Improper/degenerate node	Asymptotically stable
$\lambda = \alpha \pm \mathbf{j}\beta, \alpha > 0$	Spiral point	Unstable
$\lambda = \alpha \pm \mathbf{j}\beta, \alpha < 0$	Spiral point	Asymptotically stable
$\lambda = \pm \beta \mathbf{j}$	Center	Stable