AM 034 - Applied Mathematics - II

Brown University

Spring 2022
Homework, Set 5
Due March 16
For each of the following matrices,

$$
\left[\begin{array}{rr}
-2 & 1 \\
6 & 3
\end{array}\right], \quad\left[\begin{array}{rr}
-3 & -4 \\
5 & 1
\end{array}\right], \quad\left[\begin{array}{rr}
3 & -2 \\
5 & 1
\end{array}\right], \quad\left[\begin{array}{rr}
-5 & -2 \\
8 & 3
\end{array}\right], \quad\left[\begin{array}{rr}
-6 & -8 \\
5 & 6
\end{array}\right], \quad\left[\begin{array}{rr}
-2 & -4 \\
4 & 6
\end{array}\right], \quad\left[\begin{array}{ll}
7 & 1 \\
6 & 6
\end{array}\right]
$$

consider the constant coefficient vector differential equation

$$
\dot{\mathbf{y}}(t)=\mathbf{A} \mathbf{y}(t)
$$

5.1 (30 points) Determine the type of critical point at the origin
5.2 (30 points) Determine the stability of the critical point at the origin.
5.3 (40 points) Plot a phase portrait (direction field along with some solutions) to confirm your answers in two previous parts. If it is a node or saddle point, add the graph of the corresponding separatrix to your plot.
Please, send your code as attachement in a separate file - I don't need your pictures.
You may find the following table useful:

Eigenvalues	Type of Critical Point	Stability
$\lambda_{1}>\lambda_{2}>0$	Nodal source (node)	Unstable
$\lambda_{1}<\lambda_{2}<0$	Nodal sink (node)	Asymptotically stable
$\lambda_{1}<0<\lambda_{2}$	Saddle point	Unstable
$\lambda_{1}=\lambda_{2}>0,$ diagonal matrix	Proper node/star point	Unstable
$\lambda_{1}=\lambda_{2}<0,$ diagonal matrix	Proper node/star point	Asymptotically stable
$\lambda_{1}=\lambda_{2}>0,$ missing eigenvector	Improper/degenerate node	Unstable
$\lambda_{1}=\lambda_{2}<0,$ missing eigenvector	Improper/degenerate node	Asymptotically stable
$\lambda=\alpha \pm \mathbf{j} \beta, \alpha>0$	Spiral point	Unstable
$\lambda=\alpha \pm \mathbf{j} \beta, \alpha<0$	Spiral point	Asymptotically stable
$\lambda= \pm \beta \mathbf{j}$	Center	Stable

