AM 034 - Applied Mathematics - II

Brown University

Spring 2022
Homework, Set 4
Due March 09
For each of the following matrices,

$$
\mathbf{A}=\left[\begin{array}{ccc}
-67 & -49 & 87 \\
-52 & -34 & 69 \\
-88 & -62 & 115
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
-55 & -40 & 72 \\
-112 & -79 & 144 \\
-112 & -80 & 145
\end{array}\right]
$$

4.1 (10 points) find at least two square roots
4.2 (10 points) determine the exponential matrix $\mathbf{U}(t)=e^{\mathbf{A} t}, \quad \mathbf{U}(t)=e^{\mathbf{B} t}$,
4.3 (20 points) show that this matrix function is a solution of the initial value problem

$$
\dot{\mathbf{U}}(t)=\mathbf{A} \mathbf{U}(t), \quad \mathbf{U}(0)=\mathbf{I}
$$

and

$$
\dot{\mathbf{U}}(t)=\mathbf{B} \mathbf{U}(t), \quad \mathbf{U}(0)=\mathbf{I}
$$

respectively;
4.4 (10 points) find the matrix-function $\boldsymbol{\Phi}(t)=\frac{\sin (\sqrt{\mathbf{A}} t)}{\sqrt{\mathbf{A}}}, \quad \boldsymbol{\Phi}(t)=\frac{\sin (\sqrt{\mathbf{B}} t)}{\sqrt{\mathbf{B}}}$;
4.5 (20 points) show that the matrix function is a solution of the following initial avlue problem

$$
\ddot{\mathbf{\Phi}}(t)+\mathbf{A} \boldsymbol{\Phi}(t)=\mathbf{0}, \quad \mathbf{\Phi}(0)=\mathbf{0}, \quad \dot{\mathbf{\Phi}}(0)=\mathbf{I}
$$

and

$$
\ddot{\mathbf{\Phi}}(t)+\mathbf{B} \boldsymbol{\Phi}(t)=\mathbf{0}, \quad \mathbf{\Phi}(0)=\mathbf{0}, \quad \dot{\mathbf{\Phi}}(0)=\mathbf{I}
$$

respectively;
4.6 (10 points) construct the matrix function $\boldsymbol{\Psi}(t)=\cos (\sqrt{\mathbf{A}} t), \quad \boldsymbol{\Psi}(t)=\cos (\sqrt{\mathbf{B}} t)$
4.7 (20 points) show that they satisfy the same differential equation as in 4.5 , but subject to the initial conditions

$$
\boldsymbol{\Psi}(0)=\mathbf{I}, \quad \dot{\mathbf{\Psi}}(0)=\mathbf{0}
$$

