AM 034 - Applied Mathematics - II

Brown University

Spring 2022
Homework, Set 3
Due March 02
3.1 (20 points) For what vectors \mathbf{b} does the linear system of equations $\mathbf{A x}=\mathbf{b}$ has a nontrivial solution?
(a) $\mathbf{A}=\left[\begin{array}{rrr}2 & -1 & 8 \\ 1 & 3 & -3 \\ -1 & -2 & 1\end{array}\right]$,
(b) $\mathbf{A}=\left[\begin{array}{rrr}2 & 3 & 9 \\ 1 & 2 & 5 \\ 1 & -2 & 1\end{array}\right]$,
(c) $\mathbf{A}=\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & 1 & 4 \\ 3 & -1 & 2\end{array}\right]$.
3.2 (30 points) For each of the following matrices, find $\mathbf{U}(t)=e^{\mathbf{A t} t}$ by performing the following steps:
(a) determine all eigenvalues and corresponding eigenvectors;
(b) Form a 3×3 matrix \mathbf{S}, where each column is an eigenvector;
(c) Calculate the diagonal matrix $e^{\boldsymbol{\Lambda} t}$ having on diagonal $e^{\lambda_{j} t}$, where $\lambda_{j}(j=1,2,3)$ is an eigenvalue;
(d) Find $\mathbf{U}(t)=e^{\mathbf{A t}}=\mathbf{S} e^{\boldsymbol{\Lambda} t} \mathbf{S}^{-1}$.
(a) $\left[\begin{array}{rrr}1 & -1 & 1 \\ 2 & -1 & 3 \\ 4 & 2 & 1\end{array}\right]$,
(b) $\left[\begin{array}{rrr}2 & -1 & 8 \\ 1 & 2 & -1 \\ 1 & 7 & -1\end{array}\right]$,
(c) $\left[\begin{array}{rrr}-10 & -6 & -3 \\ 12 & 8 & 3 \\ 12 & 6 & 5\end{array}\right]$.
3.3 (40 points) For each matrix from the previous problem, perform the following steps.
(a) determine the minimal polynomial;
(b) find the Sylvester auxiliary matrix \mathbf{Z}_{k} for each eigenvalue λ_{k};
(c) verify the spectral decomposition $\mathbf{A}=\sum_{k} \lambda_{k} \mathbf{Z}_{k}$ for each matrix from the previous problem;
(d) construct the exponential matrix $\mathbf{U}(t)=e^{\mathbf{A} t}$ for each matrix from the previous problem;
(e) show that matrix $\mathbf{U}(t)$ is a (unique) solution of the matrix initial value problem

$$
\dot{\mathbf{U}}(t)=\mathbf{A} \mathbf{U}(t), \quad \mathbf{U}(0)=\mathbf{I}, \quad \text { the identity matrix. }
$$

3.4 (10 points) Given the matrices \mathbf{A} and \mathbf{B} as shown below. Find eigenvalues of their products AB and BA and determine their algebraic and geometrical multiplicities.

$$
\mathbf{A}=\left[\begin{array}{rrrr}
-1 & 2 & 2 & 1 \\
7 & -3 & -4 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
6 & 3 \\
-1 & 0 \\
0 & -4 \\
2 & 1
\end{array}\right]
$$

