AM 034 - Applied Mathematics - II

Brown University

Spring 2022
Homework, Set 2
Due February 16
2.1 (30 points) Consider the initial value problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{rr}
-1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right], \quad\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{c}
7 \\
-7
\end{array}\right] .
$$

(a) (10 points) Write down an integral equation that is equivalent to the given initial value problem.
(b) (20 points) Using Picard's approximation, find four-term approximation to the given initial value problem.
2.2 (50 points) Consider a simple pendulum equation

$$
\ddot{\theta}+\omega^{2} \sin \theta=0, \quad \theta(0)=\frac{\pi}{3}, \quad \dot{\theta}(0)=-\frac{1}{10} .
$$

(a) (10 points) Convert the given initial value problem to a system of first order differential equations suitable for Picard's iteration (so the right-hand side is a polynomial).
(b) (10 points) Write down an integral equation that is equivalent to the given initial value problem.
(c) (10 points) Set up a Picard iteration scheme based on part (b).
(d) (10 points) Perform three Picard's iterations to find a polynomial approximation to $\theta(t)$.
(e) (10 points) On interval [0, 0.6], plot your Picard's approximation along with the solution curve obtained upon application of a solution solver to the given initial value problem.
2.3 (20 points) Suppose you are given a matrix with variable entries:

$$
\mathbf{A}(t)=\left[\begin{array}{cc}
t & t^{2} \\
1 / t & 2-t
\end{array}\right]
$$

Find the derivative of its square $\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{A}^{2}(t)$. Does a regular power rule hold ?

