AM 034 - Applied Mathematics - II

Brown University
Homework, Set 1

Spring 2022
Due February 09
1.1 (30 points) Suppose that a projectile is launched into the air from ground with initial velocity v_{0} and angle α with the horizontal plane. Assuming that there is no air resistance, the model for its movement is as follows

$$
\begin{array}{lll}
\ddot{x}=0, & x(0)=0, & \dot{x}(0)=v_{0} \cos \alpha, \\
\ddot{y}=-g ; & y(0)=0, & \dot{y}(0)=v_{0} \sin \alpha .
\end{array}
$$

Here $g \approx 9.81$ is the acceleration due to gravity and overdot denotes the derivative with respect to time t.
(a) (5 points) Show that the projectile's trajectory is a parabola.
(b) (5 points) Confirm part (a) by plotting several trajectories on an $x-y$ plane.
(c) (10 points) Let $\left(x_{m}, y_{m}\right)$ be coordinates of the vertex corresponding to the parabola solution curve, so y_{m} is the maximum height attained and x_{m} is the corresponding horizontal coordinate. Plot the curve with coordinates $\left(x_{m}, y_{m}\right)$ for different launch angles α.
(d) (10 points) Find the formula for the range R (the longest distance projectile travels) and determine the launch angle of the largest range.
1.2 (40 points) Consider the second order constant coefficient differential equation

$$
2 x^{\prime \prime}+5 x^{\prime}-3 x(t)=0, \quad x(0)=3, \quad x^{\prime}(0)=-2 .
$$

(a) (10 points)

Convert this equation into a system of two equations of first order and rewrite it in matrix form:

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}
$$

(b) (10 points) Upon introducing an auxiliary dependent variable $y_{3}(t)=x^{\prime \prime}(t)$, convert this equation into a system of three equations of first order and rewrite it in matrix form:

$$
\dot{\mathbf{y}}=\mathbf{B} \mathbf{y}
$$

clearly identifying the 3 -by- 3 constant matrix \mathbf{B} and 3 -column vector \mathbf{y}.
(c) (10 points) Using a numerical solver, plot on the interval $[0,3]$ solution curves from parts (a) and (b). Do you detect any discrepancy ?
(d) (10 points) On interval $[0,3]$, plot the difference of functions $2 y_{3}(t)+5 x^{\prime}(t)-3 x(t)$ in order to control computation of the differential equation.
1.3 (30 points) Consider a third order constant coefficient Genesio differential equation

$$
x^{\prime \prime \prime}+a x^{\prime \prime}+b x^{\prime}+c x-x^{2}+x^{4}=0,
$$

where a, b, and c are some real constants.
(a) (10 points)

Convert this equation into a system of first order equations and rewrite it in vector form:

$$
\dot{\mathbf{y}}=\mathbf{f}(\mathbf{y}),
$$

clearly identifying the 3 -by- 1 vector \mathbf{f} and 3 -column vector \mathbf{y}.
(b) (10 points) Using an appropriate software package, solve numerically the Genesio equation for $a=c=0$ subject to some initial conditions (not identically zero).
(c) (10 points) Repeat the previous problem for some small values of parameters a and c. Then plot its solution on the interval $[0,3]$ along with the solution for $a=c=0$.

