Brown University Solutions to Homework, Set 1

Spring 2019

Due February 13

1.1 (30 points) Find a first order system that is equivalent to the second order equation named after the German scientist Georg Duffing (1861–1944)

$$\ddot{y} + 2\eta \,\dot{y} + y + \varepsilon \,y^3 = \cos(\omega t),$$

where the dots denote differentiation of y(t) with respect t: $\dot{y} = \mathrm{d}y/\mathrm{d}t$. Here $\eta \geq 0$ and ε are physical parameters, and ω is given frequency of excitation. In general, the Duffing equation does not admit an exact symbolic solution.

Solution. Upon introduction of two new dependent variables $x_1 = y$ and $x_2 = \dot{x}_1 = \dot{y}$, we reduce the given system of differential equations to the following one:

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -x_1 - \varepsilon x_1^3 - 2\eta x_2 + \cos(\omega t).$

1.2 (40 points) The initial value problem for the vector differential equation

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{f}(t, \mathbf{u}), \qquad \mathbf{u}(0) = \mathbf{u}_0,$$

where \mathbf{u} is unknown column-vector and \mathbf{f} is a given column vector, is equivalent to the integral equation

$$\mathbf{u}(t) = \mathbf{u}_0 + \int_0^t \mathbf{f}(s, \mathbf{u}(s)) \, \mathrm{d}s.$$

Its solution can be found as the limit $\mathbf{u}(t) = \lim_{n \to \infty} \boldsymbol{\phi}_n(t)$, where the sequence of vector functions is defined recursively by

$$\phi_0 = \mathbf{u}_0, \qquad \phi_{n+1}(t) = \mathbf{u}_0 + \int_0^t \mathbf{f}(s, \phi_n(s)) \, \mathrm{d}s, \qquad n = 0, 1, 2, \dots$$

Consider the initial value problem for the homogeneous Duffing equation:

$$\ddot{y} + 2\eta \, \dot{y} + y + \varepsilon \, y^3 = 0, \qquad y(0) = d, \quad \dot{y}(0) = v,$$

where d=1 is the initial displacement and v=-1 is the initial velocity.

Convert the above initial value problem to the system of first order equations for the following numerical values: $\eta = 3$ and $\varepsilon = 1$. Then using Picard's iteration, find the first four iterative terms $\phi_1(t), \phi_2(t), \phi_3(t), \phi_4(t)$ for the Duffing system of equations. Finally, determine the

corresponding four approximations to the solution y(t) of the original second order Duffing equation.

Solution. We rewrite the Picard iterations explicitly:

$$\phi_0 = \begin{bmatrix} d \\ v \end{bmatrix}, \qquad \phi_{n+1}(t) = \begin{bmatrix} x_{n+1}(t) \\ y_{n+1}(t) \end{bmatrix} = \begin{bmatrix} d \\ v \end{bmatrix} + \int_0^t \begin{bmatrix} y(s) \\ -x(s) - \varepsilon x^3(x) - 2\eta y(s) \end{bmatrix}_n ds, \qquad n = 0, 1, 2, \dots$$

We show each iteration separately.

$$\begin{aligned} \phi_1 &= \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \int_0^t \begin{bmatrix} -1 \\ 6 - 1 - 1 \end{bmatrix} \, \mathrm{d}s = \begin{bmatrix} 1 - t \\ 4t - 1 \end{bmatrix}, \\ \phi_2 &= \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \int_0^t \begin{bmatrix} 4s - 1 \\ 6(1 - 4s) - (1 - s) - (1 - s)^3 \end{bmatrix} \, \mathrm{d}s \\ &= \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \int_0^t \begin{bmatrix} 4s - 1 \\ [4 - 20s - 3s^2 + s^3] \end{bmatrix} \, \mathrm{d}s = \begin{bmatrix} 1 - t + 2t^2 \\ -1 + 4t - 10t^2 - t^3 + \frac{t^4}{4} \end{bmatrix}, \\ \phi_3 &= \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \int_0^t \begin{bmatrix} -1 + 4s - 10s^2 - s^3 + \frac{s^4}{4} \\ -(1 - s + 2s^2) - (1 - s + 2s^2)^3 - 6\left(-1 + 4s - 10s^2 - s^3 + \frac{s^4}{4}\right) \end{bmatrix} \, \mathrm{d}s \\ &= \begin{bmatrix} 1 - t + 2t^2 - \frac{10}{3}t^3 - \frac{t^4}{4} + \frac{t^5}{20} \\ -1 + 4t - 10t^2 + \frac{49}{3}t^3 + \frac{19}{4}t^4 - \frac{39}{10}t^5 + 2t^6 - \frac{8}{7}t^7 \end{bmatrix}, \\ \phi_4 &= \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \int_0^t \begin{bmatrix} -1 + 4s - 10s^2 + \frac{49}{3}s^3 + \frac{19}{4}s^4 - \frac{39}{10}s^5 + 2s^6 - \frac{8}{7}s^7 \end{bmatrix} \, \mathrm{d}s \\ &= \begin{bmatrix} 1 - t + 2t^2 - \frac{10}{3}t^3 + \frac{49}{12}t^4 + \frac{19}{20}t^5 - \frac{13}{20}t^6 + \frac{2}{7}t^7 - \frac{1}{7}t^8 \\ -1 + 4t - 10t^2 + \frac{49}{3}t^3 - \frac{215}{12}t^4 - \frac{131}{10}t^5 + \frac{279}{20}t^6 - \frac{5357}{420}t^7 + \cdots \end{bmatrix}. \end{aligned}$$

1.3 (30 points) Consider a third order constant coefficient differential equation

$$y''' - 3y'' + 7y' - 2y = e^{-|t|} \cos 2t.$$

Convert this equation into a system of first order equations and rewrite it in matrix form:

$$\dot{\mathbf{x}} = \mathbf{A}\,\mathbf{x} + \mathbf{f}(t),$$

clearly identifying the 3-by-3 constant matrix \mathbf{A} and 3-column vector \mathbf{f} .

Solution. Upon introducing three new dependent variables $x_1 = y$, $x_2 = \dot{y} = \dot{x}_1$, and $x_3 = \ddot{y} = \dot{x}_2$, we obtain

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3 \\ \dot{x}_3 &= 3x_3 - 7x_2 + 2x_1 + e^{-|t|} \cos 2t \end{split}$$

which we rewrite in matrix form:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -7 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ e^{-|t|} \cos 2t \end{bmatrix}.$$