Brown University Homework, Set 5

Fall 2021

Due October 20

For each of the following matrices,

$$\mathbf{A} = \begin{bmatrix} 15 & 10 & -17 \\ 28 & 21 & -34 \\ 28 & 20 & -33 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 51 & 34 & -59 \\ 10 & 9 & -13 \\ 46 & 32 & -54 \end{bmatrix},$$

- **5.1** (10 points) find at least two square roots
- **5.2** (10 points) determine the exponential matrix $\mathbf{U}(t) = e^{\mathbf{A}t}$, $\mathbf{U}(t) = e^{\mathbf{B}t}$,
- 5.3 (20 points) show that this matrix function is a solution of the initial value problem

$$\dot{\mathbf{U}}(t) = \mathbf{A} \, \mathbf{U}(t), \qquad \mathbf{U}(0) = \mathbf{I}$$

and

$$\dot{\mathbf{U}}(t) = \mathbf{B} \, \mathbf{U}(t), \qquad \mathbf{U}(0) = \mathbf{I},$$

respectively;

- **5.4** (10 points) find the matrix-function $\Phi(t) = \frac{\sin\left(\sqrt{\mathbf{A}}\,t\right)}{\sqrt{\mathbf{A}}}, \quad \Phi(t) = \frac{\sin\left(\sqrt{\mathbf{B}}\,t\right)}{\sqrt{\mathbf{D}}};$
- 5.5 (20 points) show that the matrix function is a solution of the following initial avlue problem

$$\ddot{\boldsymbol{\Phi}}(t) + \mathbf{A}\,\boldsymbol{\Phi}(t) = \mathbf{0}, \qquad \boldsymbol{\Phi}(0) = \mathbf{0}, \quad \dot{\boldsymbol{\Phi}}(0) = \mathbf{I}$$

and

$$\ddot{\boldsymbol{\Phi}}(t) + \mathbf{B}\,\boldsymbol{\Phi}(t) = \mathbf{0}, \qquad \boldsymbol{\Phi}(0) = \mathbf{0}, \quad \dot{\boldsymbol{\Phi}}(0) = \mathbf{I}$$

respectively;

- **5.6** (10 points) construct the matrix function $\Psi(t) = \cos\left(\sqrt{\mathbf{A}}\,t\right)$, $\Psi(t) = \cos\left(\sqrt{\mathbf{B}}\,t\right)$
- 5.7 (20 points) show that they satisfy the same differential equation as in 4.5, but subject to the initial conditions

$$\Psi(0) = \mathbf{I}, \quad \dot{\Psi}(0) = \mathbf{0}.$$