![]() |
Sturm--Liouville ProblemsBrown University, Applied Mathematics |
Return to computing page
Return to MuPAD tutorial page for the first course
Return to MuPAD tutorial page for the second course
Return to the main page (APMA0340)
where the coefficients are defined according to Euler--Fourier formulas
Let us choose \( f(x) = x^2 \) on the interval [0,2].
f := x^2:
f2 := (x+2)^2:
l := 1:
a_0 := 1/l*(int(f2,x=-1..0)+int(f,x=0..1)):
cs := cos(k*PI*x/l):
sn := sin(k*PI*x/l):
a_k := simplify(1/l*(int(f2*cs,x=-1..0)+int(f*cs,x=0..1))):
b_k := simplify(1/l*(int(f2*sn,x=-1..0)+int(f*sn,x=0..1))):
Fourier := a_0/2 + sum(a_k*cs + b_k*sn,k=1..n):
a := 100:
Cesaro := sum(Fourier,n=1..a)/a:
plot(Cesaro,x=-2..2)
Another approach:
f:=x->x;
L:=2;
a0:=int(f(x),x=-L..L)/(2*L)
assume(n,Type::NonNegInt)
an:=simplify(int(f(x)*cos(n*PI*x/L),x=-L..L)/L)
bn:=simplify(int(f(x)*sin(n*PI*x/L),x=-L..L)/L)
a:=m->subs(an,n=m);
a(0):=a0;
b:=m->subs(bn,n=m);
b(1)
Fourier series with N +1 terms:
S:=N->a(0) + sum(a(n)*cos(n*PI*x/L)+b(n)*sin(n*PI*x/L),n=1..N)
S(4)
plot(f,S(1),S(2),S(3),x=-L..L)
plot(f,S(10),x=-L..L)
Cesaro series:
C:=N->a(0) + (sum(a(n)*(N+1-n)*cos(n*PI*x/L)+b(n)*(N+1-n)*
sin(n*PI*x/L),n=1..N))/(N+1)
plot(f,C(10),x=-L..L)
Step-function on the interval [-1/2, 1/2]:
f:=piecewise([x<=-1/2,0],[x>-1/2 and x<1/2,1],[x>1/2,0])
plot(f,x=-1..1)
Another piecewise continuous function:
f:=piecewise([x<=-1/2,x],[x>-1/2 and x<1/2,x^2],[x>1/2,-x])
plot(f,x=-1..1)
Congrats! You now have just opened MuPAD. Click "Next" to continue.
Home |
Next > |