
Week 11
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11 Power series solutions

If a real-valued function f(x) has N + 1 continuous derivatives on the interval a 6 x 6 b, then

f(x) =
N
∑

n=0

cn (x− x0)
n =

N
∑

n=0

1

n!
f (n) (x0) (x− x0)

n +RN+1(x), a < x < b,

where the remainder term is

RN+1 =
f (N+1)(ξ)

(N + 1)!
(x− x0)

N+1

for some (unknown ξ in the interval a 6 x 6 b. If we set RN+1 = 0, an N -th degree polynomial
approximation to f(x) is obtained; this is sometimes called the Taylor polynomial of degree N . If
the remainder RN+1 tends to zero when N → ∞, the the function has a power series representation

f(x) =
∑

n≥0

cn (x− x0)
n =

∑

n≥0

1

n!
f (n) (x0) (x− x0)

n , a < x < b,

called the Taylor series for function f centered at x0. If the center is zero, x0 = 0, the series is
usually referred to as the Maclaurin series. A function that has a convergent Taylor series in some
neighborhood of the point x0 is called holomorphic (or analytic). It turns out that if the power
series converges at some point other than x0, then it converges in a symmetric interval |x− x0| < R,
where R is called the radius of convergence. Moreover, a Taylor series for any holomorphic function
is unique.

Since all coefficients in Taylor’s series are evaluated at one single point—the center, this series
provides information about the function locally. Therefore we expect that its truncated version—
Taylor’s polynomial—gives a good approximation within the interval of convergence. We try to use
this property for constructing or approximating a solution to differential equation in the form of
power series. To do this, we need to know one main property of Taylor’s series: the derivative of any
holomorphic function f exists and can be obtained by term-by=term differentiation:

f ′(x) =
∑

n≥1

n cn (x− x0)
n−1 =

∑

k≥0

(k + 1) ck+1 (x− x0)
k .

We will use another important property for multiplication of two power series:
(

∑

n≥0

an (x− x0)
n

)(

∑

n≥0

bn (x− x0)
n

)

=
∑

n≥0

cn (x− x0)
n ,
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where

cn =
n
∑

k=0

akbn−k

is called the convolution of two series.
There are two main techniques to obtain power series representations of solutions to differential

equations (ordinary and partial), and we consider them separately. To make exposition clear, we
show how to apply them on typical examples.

11.1 Differential Transform Algorithm

We consider a typical first order differential equation subject to some initial condition

y′ = y2 − x2, y(0) = 1/2.

Since the initial condition is set at the origin, it is natural to seek its solution as the Maclaurin power
series:

y(x) =
∑

n≥0

cnx
n =

∑

n≥0

1

n!
y(n) (0) xn.

From the initial condition, we deduce that c0 = 1/2. To find other coefficients, one needs to differ-
entiate sequentially the above equation and set x = 0. This yields

y′(0) = lim
x→0

(

y2 − x2
)

= lim
x→0

y2 = y(0)2 =
1

4
,

y′′(0) = lim
x→0

textd

dx

(

y2 − x2
)

= lim
x→0

(2y y′ − 2x) = 2

(

1

2

)3

,

y′′′(0) = lim
x→0

textd2

dx2

(

y2 − x2
)

= lim
x→0

(

6 y4 − 2
)

= 3
1

8
− 2 = −

13

8
.

...

As you see, further calculations become quickly messy, and a computer algebra system is needed.
This allows us to find some first terms in the solution power series:

y(x) =
1

2
+

1

4
x+

1

8
x2 −

13

48
x3 −

5

96
x4 −

11

320
x5 · · · .

We check our answer with Mathematica:

AsymptoticDSolveValue[{y’[x] == y[x]*y[x] - x^2, y[0] == 1/2},

y[x], {x, 0, 8}]
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11.2 Derivation of Recurrences

An another approach to find the power series representation of a solution is to derive a recurrence
for its coefficients. Substituting y =

∑

n≥0 cnx
n into the differential equation yields

∑

n≥0

(n+ 1) cn+1x
n =

∑

n≥0

bnx
n − x2,

where

bn =
n
∑

k=0

ckcn−k

is a convolution of the series for y(x) with itself. Comparing coefficients of like powers of x leads to
the recurrence

c1 = b0 = c20 =
1

4
,

2 c2 = b1 = 2 c0c1 = 2
1

8
,

3 c3 = b2 − 1 = 2 c0c2 + c21 − 1 = −
13

16
,

(n+ 1) cn+1 = bn =
n
∑

k=0

ckcn−k, n = 3, 4, . . . .

Therefore, we get the full-history recurrence

cn+1 =
1

n+ 1

n
∑

k=0

ckcn−k, n = 3, 4, . . .

11.3 Second Order ODEs

Consider the nonhomogeneous Chebyshev equation

(

1− x2
)

y′′ − x y′ + 25 y = x2, y(0) = 1, y′(0) = −1.

We seek its solution in the form of Maclaurin series

y(x) =
∑

n≥0

cnx
n = 1− x+

∑

n≥n

cnx
n

because the first two coefficients follow from the initial conditions. Differentiation of the series gives

x y′ =
∑

n≥1

n cnx
n,

y′′ =
∑

n≥2

n(n− 1) cnx
n−2 =

∑

n≥0

(n+ 2) (n+ 1) cn+2x
n,
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x2y′′ =
∑

n≥2

n(n− 1) cn−2x
n.

Substitution into the Chebyshev equation yields

∑

n≥0

(n+ 2) (n+ 1) cn+2x
n −

∑

n≥2

n(n− 1) cnx
n −

∑

n≥1

n cnx
n + 25

∑

n≥0

cnx
n = x2.

Equating like powers of x, we obtain

2 c2 + 25 c0 = 0 =⇒ c2 = −
25

2
,

6 c3 − c1 + 25 c1 = 0 =⇒ c3 = −4,

12 c4 − 2 c2 − 2 c2 + 25 c2 = 1 =⇒ c4 = −
5

3
,

(n+ 2) (n+ 1) cn+2 − n(n− 1) cn − n cn + 25 cn = 0, n = 3, 4, . . . .

We check our answer with Maple:

dsolve({diff(y(x),x,x)*(1-x^2) -x*diff(y(x),x) + 25*y(x)

= x^2, y(0) =1, D(y)(0) =-1},y(x),series)

y(x) = 1− x−
25

2
x2 + 4x3 +

527

24
x4 −

16

5
x5 + · · · .
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