Week 10

Vladimir Dobrushkin

Method of Undetermined Coefficients

The method of undetermined coefficients is used to find a particular solution for a linear differential equation with constant coefficients

$$
L[\mathrm{D}] y(x)=f(x),
$$

where $L[\mathrm{D}]$ is a linear differential operator

$$
L[\mathrm{D}]=a_{m} \mathrm{D}^{m}+a_{m-1} \mathrm{D}^{m-1}+\cdots+a_{1} \mathrm{D}+a_{0} \mathrm{I}, \quad \mathrm{D}=\frac{\mathrm{d}}{\mathrm{~d} x},
$$

and $f(x)$ is a function that is annihilated by some constant coefficient differential operator

$$
M[\mathrm{D}] f(x)=0 .
$$

Therefore, $f(x)$ is polynomial times exponential function times a trigonometric function. The roots of the characteristic polynomial

$$
M[\sigma]=0
$$

are called the control numbers. If we multiply the given nonhomogeneous differential equation $L[\mathrm{D}] y(x)=f(x)$ by the differential operator $M[\mathrm{D}]$, we reduce the problem for nonhomogeneous equation to a similar problem for a homogeneous equation:

$$
M[\mathrm{D}] L[\mathrm{D}] y=0 .
$$

If a control number σ does not match the roots of the characteristic polynomial $L(\lambda)=0$, then a particular solution has the same form as $f(x)$. If the control number σ matches the root of multiplicity m of the characteristic equation, then a particular solution of the nonhomogeneous equation has the same form as $f(x)$ multiplied by x^{m}. The particular values of coefficients of a particular solution are determined upon substitution into the given nonhomogeneous equation.

Examples of application of the method are given on the web site:
http://www.cfm.brown.edu/people/dobrush/am33/Mathematica/ch4/muc.html

