APMA 0330 — Applied Mathematics - I
Brown University Fall, 2017
Solutions to Homework, Set 8 Due December 6

8.1 (40 pts) Find the inverse Laplace transforms of the following functions.
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Solution: In all problems, we first determine singular points that are nulls of the denominator.

(a) The denominator A\* 4+ 9 has two complex conjugate roots A = +3j of multiplicity 2. To
find the inverse Laplace transform, we calculate only one residue:
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Extracting the real part and multiplying by two, we obtain

2
£ {(;T;))Q} =t cos3t H(t).

Since multiplication by an exponential multiple corresponds to the shift, we get the required
formula.

Other parts of this exercise follow the same pattern.
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8.2 (20 pts) Using the Laplace transform, solve the initial value problem.

29" =Ty +3y=H(t)-H(t-2), y(0)=0, y(0)=1
Solution: Application of the Laplace transform to the given initial value problems gives
1
(2)\2 — T+ 3) v (\) — 2y (0) + Ay(0)) + 7y(0) = X [1 — e*”} ,

where y* is the Laplace transform of the unknown function. Upon some simplification, we get

9 1 1
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The first term, which we denote by yF, is

2 2 1 2
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Its inverse Laplace transform

_ -1 2 _2 3t t/2
yn(t) = £ [2/\2—7>\+3}_5(6 ) H (D)

is the solution of the initial value problem
2y -7y +3y =0, y(0) =0, %(0)=1.
The second term, which we denote by yﬁ, is the difference of two functions:
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Taking the inverse Laplace transform, we represent this function as

Wt =€ ey (- )] = a0 - gl -2,

g(t) = £ [; 1] .

where

202 —TA+3 A
Application of the residue theorem yields

6)\1‘,

9(0) = Res+ R R - Do —9)
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Each residue is not hard to evaluate:

et 1
Res=1lm ————— = —
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el 2
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el 1
Res = i T3t
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Adding these three functions, we obtain
1 2 1
t)=|=— =€+ =¥ H(t).
o) = |5 = 2 ¢4 = | H(p)

Note that the function g(t) is the solution of the initial value problem (with homogeneous initial
conditions):
2y" =Ty +3y = H(t), y(0) =0, %(0)=0.

8.3 (40 pts) Using the Laplace transform, solve the initial value problem.
y' =2y +5y=sin(2t)[H(t —7)— H(t — 57)], y(0) =0, '(0)=0.

Solution: Applying the Laplace transform, we reduce the given initial value problem to the
algebraic equation for y”, the Laplace transform of the unknown solution:

2
2 L —TA —57A
We can express y(t) via one function
1 2

t — —1
90 =L o v

as
y(t) = g(t — ) — g(t —5m).
Since the denominator has two pairs of complex conjugate roots

A=1+2j and A = £2j,

we just need to find two residures:
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and similarly

R e)\t 2 _ e)\t 2
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Extracting real parts of the above residures, we get

R Res —— 2 d 9% — 4 cos?2
in 2t — t
RS —ogs wrd 2.7 on cos21).
et 2 1
R Res (sin2t + 4 cos2t).

% A2 —2\+5 >\2+4 217

Multiplication by 2 gives

2 1 :
—Q%ZRes _2)\+5 B EwinkT: [(1+¢€")sin2t +4 (1 — e€') cos2t] H(t).
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