APMA 0330 — Applied Mathematics - I

Brown University Homework, Set 3 Fall, 2017 Due October 4

3.1 (12 pts) Given a potential function
$$\psi(x, y)$$
, find the exact differential equation $d\psi(x, y) = 0$.

(a) $\psi(x,y) = 3x^2 + 5y^2$; (b) $\psi(x,y) = \exp(3x^2y^3)$; (c) $\psi(x,y) = \ln(x^3y^4)$; (d) $\psi(x,y) = (2x + 3y - 5)^2$.

3.2 (20 pts) Show that the following differential equations are exact and solve them

(a)
$$3x^2y^2y' + 2y^3x = 0;$$

(b) $y(e^{xy} + y) dx + x(e^{xy} + 2y) dy = 0;$
(c) $(3x^2y + 2x e^y) dx + (x^2e^y + x^3) dy = 0;$
(d) $(2xy^2 - 3) dx + (2x^2y + y^2) dy = 0.$

3.3 (24 pts) Are the following equations exact? Solve the initial value problems.

- (a) $\sin \pi x \, \cos 3\pi y \, dx + 3 \cos \pi x \, \sin 3\pi y \, dy, \, y(3/2) = 1/3;$
- **(b)** $6xy \, dx + (3x^2 + 4y^3) \, dy = 0, \ y(0) = 4;$
- (c) $(3x^2y 5) dx + (x^3 + 6y^2) dy = 0, y(1) = 2;$
- (d) $(\cos\theta 2r\cos^2\theta) dr + r\sin\theta(2r\cos\theta 1) d\theta = 0, \quad r(\pi/4) = 1.$
- **3.4** (24 pts) Show that the given equations are not exact, but become exact when multiplied by the corresponding integrating factor. Find an integrating factor as a function of x only and determine a potential function for the given differential equations.
 - (a) y' + y(1+2x) = 0;(b) $x^3 y' = x^2 y + 3x;$ (c) $(yx^3 e^{xy} - 2y^3) dx + (x^4 e^{xy} + 3xy^2) dy = 0;$ (d) $4 dx - e^{y-2x} dy = 0.$
- **3.5** (20 pts) Find an integrating factor as a function of y only and determine the general solution for the given differential equations.

(a)
$$(y+3) dx - (x-y) dy = 0;$$
 (b) $\left(\frac{y}{x} - 1\right) dx + \left(2y^2 + 1 + \frac{x}{y}\right) dy = 0;$

(c) $(2xy^2 + 3y) dx - 3x dy = 0;$ (d) y(x + y + 2) dx + x(x + 3y + 4) dy = 0.