How to Solve the Transportation Problem with MPL/CPLEX By your software advisor Gabriel Plano

Open MPL, go to file -> new then type the following:

Problem 1

Suppose you have three canneries (sources) and four warehouses (destinations). The shipment costs, outputs (1 for each source) and demands (1 for each destination) are as follows:

		Warehouses				
		1	2	3	4	Output
Canneries	1	464	513	654	867	75
	2	352	416	690	791	125
	3	995	682	388	685	100
	Demand	80	65	70	85	

index source := 1..3; ! equivalent to writing "source := (1,2,3);" destination := 1...4; data shipcost[source,destination]:= (464,513,654,867, 352,416,690,791, 995,682,388,685); ! the output for the 3 sources ! the demand for the 4 destinations Output[source]:= (75,125,100) Demand[destination]:= (80,65,70,85); variables ! these are the 3*4 = 12 decision variables Ship[source,destination]; mode1 min C = sum(source,destination: Shipcost*Ship); ! the sum is over both indices subject to C1[source]: constraint 1 sum(destination: Ship) = Output; the total shipped by each cannery equals its output I C2[destination]: I constraint 2 sum(source: Ship) = Demand; the total shipped to each warehouse equals its demand 1 end

The summation in constraint 1 is like summing over the columns in the table above. You take the sum over the destination index, so this is the index that you specify in the sum command: "sum(**destination**: Ship)". Similarly, for constraint 2 the sum is over the source index, like summing over rows in the table above.

To solve the problem, go to Run -> Solve -> Solve CPLEX 300, or press

You should get the following optimal solution:

MIN C = 152535.000000

source	destination	Activity
1	1	0.000000
1	2	20.000000
1	3	0.000000
1	4	55.000000
2	1	80.000000
2	2	45.000000
2 2	3 4	0.000000
3	1	0.000000
3	2	0.000000
3	3	70.000000
3	4	30.000000

Problem 2

Now, here is how you would solve a problem with a dummy source and big M's in MPL. We use the water allocation example from Chapter 8. Specifically, you should look at table 8.12 on page 318. Type the following in MPL.

index		
	<pre>source := (Colombo,Sacron,Calorie,Dummy);</pre>	! sources are rivers
data	destination := (B_min,B_extra,Los_Devils,San_Go,Hollyglass);	! destinations are cities
uucu	<pre>DeliveryCost[source,destination] := (16,16,13,22,17,</pre>	
	14,14,13,19,15,	
	19,19,20,23,-1,	! replace the M's from table 8.12
	-1,0,-1,0,0);	! with -1's
	Supply[source] := (50 60 50 50);	! from the column labeled supply
	Demand[destination] := (30 20 70 30 60);	! from the row labeled demand
variab]	es	

	Ship[source, destination]	L this is the only new line	
model	where (Deriverycost[source,destination] >= 0);	! LITS IS the only new line	
mouer	<pre>min cost = sum(source.destination: DelivervCost*Ship):</pre>		
subject	to		
	C1[source]:		
	<pre>sum(destination: Ship) = Supply;</pre>		
	C2[destination]:		
ام مر م	sum(source: Snip) = Demand;		
ena			

The only difference is that M's are replaced with -1's and that the line "where (DeliveryCost[source,destination] >= 0);" must be added when defining the Ship[source,destination] variable. This line makes it so that the impossible "routes" from rivers to cities are not among the decision variables, as these routes do not satisfy DeliveryCost[source,destination] >= 0. Run CPLEX and you should get the following solution:

MIN	cost	=	2460.	000000

source	destination	Activity	
Colombo	B_min	0.000000	
Colombo	B_extra	0.000000	
Colombo	Los_Devils	50.00000	
Colombo	San_Go	0.000000	
Colombo	Hollyglass	0.000000	
Sacron	B_min	0.000000	
Sacron	B_extra	0.000000	
Sacron	Los_Devils	20.000000	
Sacron	San_Go	0.000000	
Sacron	Hollyglass	40.000000	
Calorie	B_min	30.000000	
Calorie	B_extra	20.000000	
Calorie	Los_Devils	0.000000	
Calorie	San_Go	0.00000	
Dummy	B_extra	0.000000	
Dummy	San_Go	30.00000	
Dummy	Hollyglass	20.00000	

This is consistent with the solution given in table 8.23 on page 333.