Transportation Problem in Excel

Liz Livingstone APMA 1210 Prof. Dobrushkin Fall 2009

The Problem

- P&T Shipping problem
- Minimize cost subject to constraints

	Warehouse (shipping cost per truckload)								
cannnery	1	2	3	4	OUTPUT				
1	464	513	654	867	75				
2	352	416	690	791	125				
3	995	682	388	685	100				
allocation	80	65	70	85					

Three questions

- What are the decisions to be made?
 - Number of truckloads from each cannery to each warehouse
- What are the constraints on these decisions?
 - Total amount shipped from each cannery must be equal to its output (supply)
 - The total amount received by each warehouse must equal its allocation (demand)
- What is the overall measure of performance for these decisions?
 - Minimized shipping costs

The Problem

- Production scheduling data for Northern Airplane Co
- Minimize cost subject to constraints

	Cost per unit distributed									
	Destination: 1	2	3	4	5	supply				
Source : 1	1.08	1.095	1.11	1.125	0	25				
2	100000	1.11	1.125	1.14	0	35				
3	100000	100000	1.1	1.115	0	30				
4	100000	100000	100000	1.13	0	10				
demand	10	15	25	20	30					

Three questions

- What are the decisions to be made?
 - Number of engines produced in month i for installation is month j

• What are the constraints on these decisions?

- Number engines produced (supply)
- Number of engines installed (demand)
- What is the overall measure of performance for these decisions?
 - Minimized cost

Excel

- Identify the decision variables
- Identify the constraints
- Program the objective function
- Input into the solver to get optimal solution
 - Depending on the problem, the constraints may be equalities or inequalities