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1 The steel production problem

1.1 The problem

2 products can be produced at a steel mill:

• We can make 200 tons of product 1 in an hour; the profit for each ton is 25 dollars;
the demand is 6000 tons. We must make at least 1000 tons of this product.

• We can make 140 tons of product 2 in an hour; the profit for each ton is 30 dollars;
the demand is 4000 tons. We must make at least 2000 tons of this product.

We have 40 hours of production time available.

The goal is to design a production plan to maximize total profit.

With xi = tons of product i to be made, we get the following LP:

max 25x1 +30x2

st. x1 ≥ 0, x2 ≥ 0
1

200
x1 + 1

140
x2 ≤ 40

1000 ≤ x1 ≤ 6000

2000 ≤ x2 ≤ 4000

(1.1)

1.2 Writing and running a correct model

The simplest version of the steel problem’s solution is below:

### File: steel-simple.mod
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var x1 >=0, <= 6000;

var x2 >=0, <= 4000;

maximize profit: 25*x1 + 30*x2;

subject to time: (1/200)*x1 + (1/140)*x2 <= 40;

## here: ’profit’ and ’time’

## are arbitrarily chosen names.

---------------------------------------------------------

AMPL run (the output may look slightly different, depending on

what version you are using; in particular, in the student version, that

you get from ampl.com, you need to type ‘‘option solver cplex;’’, and

in the version on the department’s Unix machines, you need to type

‘‘option solver cplexamp;’

ampl: model steel.mod;

ampl: data steel.dat;

ampl: option solver cplex;

ampl: solve;

ILOG CPLEX 8.000, licensed to "university-chapel hill, nc", options: e m b q

CPLEX 8.0.0: optimal solution; objective 188571.4286

0 dual simplex iterations (0 in phase I)

ampl: display x1, x2;

x1 = 1000

x2 = 4000

ampl:

When we split the problem into model and data files, they look like this:

### File: steel.mod

param n :=2;

param a {j in 1..n};

param b;

param c {j in 1..n};

param u {j in 1..n}; # Upper bound on production

param l {j in 1..n}; # Lower bound on production

var x {j in 1..n} <= u[j], >= l[j];
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maximize profit: sum {j in 1..n} c[j] * x[j];

subject to time: sum {j in 1..n} (1/a[j]) * x[j] <= b;

## here: ’param’ and ’var’ are reserved keywords; ’profit’ and ’time’

## are arbitrarily chosen names.

---------------------------------------------------------

### File: steel.dat

param a 1 200

2 140;

param c 1 25

2 30;

param u 1 6000

2 4000;

param l 1 1000

2 2000;

param b := 40;

---------------------------------------------------------

AMPL run (the output may look slightly different, depending on

what version you are using).

ampl: model steel.mod;

ampl: data steel.dat;

ampl: option solver cplexamp;

ampl: solve;

ILOG CPLEX 8.000, licensed to "university-chapel hill, nc", options: e m b q

CPLEX 8.0.0: optimal solution; objective 188571.4286

0 dual simplex iterations (0 in phase I)

ampl: display x;

x [*] :=

1 5142.86

2 2000

;

ampl:
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### Remark: the number of iterations can be 0,

### if the problem is very simple;

### in that case, a so-called ‘‘LP preprocessor’’

### already solves the problem.

### We can change some of the data, and resolve:

ampl: let u[1] := 5000;

ampl: display x.ub;

x.ub [*] :=

1 5000

2 4000

;

### x.ub is the current upper bound on x; the .ub extension works for

### any variable. I.e. we can write y.ub, if y is a variable vector.

### Similarly, x.lb gives the lower bounds.

ampl: solve;

ILOG CPLEX 8.000, licensed to "university-chapel hill, nc", options: e m b q

CPLEX 8.0.0: optimal solution; objective 188000

1 dual simplex iterations (0 in phase I)

1.3 Debugging an incorrect model

Suppose we have set up the data in a way, so the LP is infeasible. Usually in an
infeasible LP, there are only a few constraints which result in infeasibility. As an
extreme example, in:

x1 ≤ 2, x1 ≥ 3, 0 ≤ xi ≤ 1 (i = 2, . . . , 1000)

the only constraints that cause trouble, are the first two. They form a so called irre-

ducible infeasible system; that is, a subset of all inequalities, which are infeasible, but
dropping any one of them would make this system feasible. (i.e. x1 ≤ 2, x1 ≥ 3 is
infeasible, but dropping any one of these gives just one inequality, which is of course
feasible).

For instance, this data makes the steel problem infeasible:

### File: steel.dat

param a 1 200
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2 140;

param c 1 25

2 30;

param u 1 6000

2 4000;

param l 1 4000

2 3000;

param b := 40;

AMPL run:

ampl: solve;

presolve: constraint time cannot hold:

body <= 40 cannot be >= 41.4286; difference = -1.42857

### Not too useful info... We will find an IIS, to localize the problem.

ampl: option presolve 0;

### This tells the solver to turn the preprocessor off.

ampl: option cplex_options ’iisfind 1’;

### This tells the solver to find an IIS.

ampl: solve;

ILOG CPLEX 8.000, licensed to "university-chapel hill, nc", options: e m b q

CPLEX 8.0.0: iisfind 1

Bound infeasibility column ’x1’.

CPLEX 8.0.0: infeasible problem.

0 simplex iterations (0 in phase I)

Returning iis of 2 variables and 1 constraints.

constraint.dunbdd returned

1 extra dual simplex iterations for ray (1 in phase I)

suffix iis symbolic OUT;
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option iis_table ’\

0 non not in the iis\

1 low at lower bound\

2 fix fixed\

3 upp at upper bound\

’;

suffix dunbdd OUT;

### Most of the above stuff is just technicalities

### that you can ignore...

### The important part comes below:

ampl: display x.iis;

x.iis [*] :=

1 low

2 low

;

ampl: display time.iis;

time.iis = upp

The meaning of the above lines is:

x1 ≥ 4000, x2 ≥ 3000, (1/200)x1 + (1/140)x2 ≤ 40

is an IIS. (That is, the upper bounds on x have nothing to do with the infeasibility).

1.4 Another variant of the steel problem

The next model is the same, but it gives names to the products.

### File: steel2.mod

set P;

param a {j in P};

param b;

param c {j in P};

param u {j in P};

param l {j in P};
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var x {j in P};

maximize profit: sum {j in P} c[j] * x[j];

subject to time: sum {j in P} (1/a[j]) * x[j] <= b;

subject to limit {j in P}: l[j] <= x[j] <= u[j];

### File: steel2.dat

set P := bands coils;

param: a := bands 200

coils 140;

param: c := bands 25

coils 30;

param: u := bands 6000

coils 4000;

param: l := bands 1000

coils 2000;

param b := 40;

### AMPL run:

ampl: model steel2.mod;

ampl: data steel2.dat;

ampl: option solver cplexamp;

ampl: solve;

ILOG CPLEX 8.000, licensed to "university-chapel hill, nc", options: e m b q

CPLEX 8.0.0: optimal solution; objective 188571.4286

0 dual simplex iterations (0 in phase I)

ampl: display x;

x [*] :=

bands 5142.86

coils 2000

;
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Important!! If you make a mistake in a model, or data file, you will need to 1) fix
it, 2) type “reset”, or “reset data” before you can reread those files. Example:

ampl: model steel.mod;

steel.mod, line 11 (offset 205):

syntax error

context: m >>> aximize <<< profit: sum {j in 1..n} c[j] * x[j];

ampl?

### There was a mistake in the model file; we fix it, and reread it.

ampl: reset;

ampl: model steel.mod;

ampl: data steel.dat;

steel.dat, line 1 (offset 2):

syntax error

context: p >>> aram <<< a 1 200

ampl?

### Now the model file was OK, but there is a mistake in the data file;

### we fix the data file, and reread only the data file (the model file

### was OK to start with).

ampl? ;

ampl: reset data;

ampl: data steel.dat;

ampl:

2 The minimum cost flow problem

This problem is excellent to illustrate how to define variables xij , where the existing

variables are just a small subset of the possible ones.

### File: mcf.mod

param n :=5; # Number of nodes;

8



set ARCS within {1..n, 1..n};

param demand {1..n};

check: sum {i in 1..n} demand[i] = 0;

### This statement will check that the sum of demands is zero, as one would

### expect for the problem to be feasible.

param cost {ARCS};

param u {ARCS};

var x {ARCS} >=0;

minimize total_cost:

sum { (i,j) in ARCS } cost[i,j]*x[i,j];

subject to balance {i in 1..n}:

sum { (j,i) in ARCS } x[j,i] - sum{ (i,j) in ARCS } x[i,j] = demand[i];

### File: mcf.dat

param demand := 1 1

2 3

3 5

4 -6

5 -3;

param: ARCS: cost := 1 2 10

1 4 5

1 5 7

2 3 5

2 4 6

2 1 1

3 1 5

3 4 10

3 5 1

4 2 1

4 5 6

5 1 1

5 2 3

5 4 7;
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3 A multiperiod problem

Suppose we have a multiperiod problem, with variables

• invi (for inventory at the end of period i), prodi (for production in period i, and

• parameters demandi (for demand in period i),

• constraints

invi−1 + prodi = demandi + invi

We can write these constraints concisely as follows (only parts of the model and
data files are written down):

### File: production.mod

param n;

param demand {1..n};

var inv {0..n}; # inventory;

var prod {1..n}; # production;

subject to balance {i in 1..n}:

inv[i-1] + prod[i] = demand[i] + inv[i];

etc.

### File: production.dat

param n := 6;

param demand := 1 5

2 3

3 16

4 11

5 10

6 7;

etc.
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This has the following advantages, as opposed to writing out the 6 constraints
individually:

• This is much cleaner, and easier to read.

• If the parameter n is not “hardwired” into the program, i.e. you do not write 6
in any place where n should be used, then the code is much more flexible. If you
have 2 data files, one with say n = 6, the other with n = 1000, then you can use
the same model file with both.

4 Some neat tricks

There are some useful internal variables in AMPL:

_nvar is the number of variables;

_var is a vector containing the values of all variables;

_varname is a vector containing the names of all variables;

So in the steel problem, we can do:

ampl: display _varname;

_varname [*] :=

1 ’x[1]’

2 ’x[2]’

;

ampl: display _var;

_var [*] :=

1 5142.86

2 2000

;

ampl: display {i in 1.._nvars: _var[i]>0} _varname[i], {i in 1.._nvars: _var[i]>0} _var[i];

: _varname[i] _var[i] :=

1 ’x[1]’ 5142.86

2 ’x[2]’ 2000

;

The last command displays the names and values of all variables with a positive value

(in this instance, actually all variables have a positive value).
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