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Dissipative Particle Dynamics (DPD) simulations of wall-bounded flows exhibit density fluctuations
that depend strongly on the no-slip boundary condition and increase with the level of coarse graining. We
develop an adaptive model for wall-particle interactions that eliminates such oscillations and can target
prescribed density profiles. Comparisons are made with ideal no-slip boundary conditions and molecular
dynamics simulations. The new model is general and can be used in other coarse-grained particle

methods.
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Interaction of liquids with solid walls causes layering of
the fluid atoms, which is responsible for the large density
fluctuations very near the wall [1]. Targeting specific den-
sity profiles is an important problem in microfluidic mix-
ing, interfacial phenomena, and other nanotechnology
applications. For example, water density profiles play an
important role in regulating ion and macromolecule trans-
port, e.g., ion-water and water-macromolecule interactions
play a central role. The water-ion and water-DNA inter-
actions can be regulated by controlling the water density
profiles. Molecular dynamics (MD) simulations with prop-
erly formulated interaction potentials have provided great
insight into the wall-liquid interface but are computation-
ally expensive, especially for micron-size systems. To
this end, coarse-grained particle methods [e.g., lattice-
Boltzmann method, smooth particle hydrodynamics, dis-
sipative particle dynamics (DPD)] have been developed in
the last two decades to bridge the gap between the atom-
istic scales and the continuum. These more efficient meth-
ods aim to retain important features of the microscopic
structure but they may also introduce numerical artifacts
through the coarse-graining procedure.

DPD is a relatively new mesoscopic method [2] that
describes clusters of molecules moving together in a
Lagrangian fashion subject to soft quadratic potentials.
While DPD has been successfully applied in several simu-
lations of complex fluids [3—5], there are still many un-
resolved issues that prevent this computationally efficient
method from widespread use: they include thermodynamic
consistency, coarse-graining artifacts, and anomalous be-
havior in confined geometries. In this Letter, we report on
the last two issues with emphasis on density fluctuations
induced by the presence of solid walls. These fluctuations
may be physical and thus desirable but in other applica-
tions may be erroneous; for example, in colloidal suspen-
sions the artificial layering of a DPD fluid close to the wall
may cause spurious depletion forces between the colloids.
Unlike the MD method, the soft repulsion between DPD
particles cannot prevent fluid particles from penetrating
solid boundaries, and thus extra effort is required to impose
accurately the no-slip wall boundary condition. This issue
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of imposing correctly the no-slip boundary condition
seems to be the main cause of the artificial density fluctua-
tions. There have been several attempts to impose the no-
slip boundary condition correctly in DPD simulations of
wall-bounded flows [6—9]. They are based on higher den-
sity of wall particles, increased values of the repulsive
force or reflection of particles near the wall. However,
these approaches suffer from either depletion of particles
near the wall or artificial ordering of the near-wall particles
leading to unacceptable density fluctuations. Some of the
proposed methods work well when the conservative force
coefficient is zero, however density fluctuations are ob-
served for nonzero values and they increase as these values
increase. We note here that similar issues are present in
other coarse-grained particle methods, e.g., in smooth
particle hydrodynamics, and have been addressed in a
series of papers [10—12] resolving most open issues at
least for planar geometries, although treatment of complex
geometries remains a challenge [12].

As a particle-based mesoscopic method, DPD considers
N particles, each having mass m;, whose momenta and

position vectors are governed by Newton’s equations of
dr;
@’
v; its velocity, 7; its position, and F; its net force. The

interparticle force F;; exerted on particle i by particle j is

motion. For a typical particle i: ; = F,=m, dd—’jt“where

composed of conservative (F’ 5) dissipative (ﬁ ?j), and ran-
dom (F ,’-}) components. Hence, the total force on particle i
is given by F; = 5 FG+ f’g + Atil/zﬁf}, At being the
simulation time step. The sum acts over all particles within
a cutoff radius r, beyond which the forces are considered
negligible. We set the interaction radius to r. = 1, thus
defining the length scale of the system. Denoting 7;; =

?l‘ - ;]’ ‘Dlj = l_;l' - ljj, rl‘j = |;ij|,andtheunitvect0r glj =

—:” , the forces are
ij
7C _ p(C >
Fi= Ft )(rij)eij, (1)

F?j = _?’CUD(”ij)(ﬁij ’ Eij)eij: (2)
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where the §;; are symmetric Gaussian random variables
with zero mean and unit variance and o, 7y are coupled by
0% = 2ykgT, kg being the Boltzmann constant and T the
temperature of the system [13]. A common choice for the
conservative force is a soft repulsion given by F©(r, ;) =

i .. .
a;;max{l — £, 0}. The dissipative and random forces, on
c

the other hand, are characterized by strengths w?(r; j) and
w®(r;;) coupled by P(r;) = [w®(r;)]* = [max{(1 —
%) 0}]>. The above relation is necessary for thermody-
namic equilibrium [13].

The conservative forces present in the DPD equations
can be tailored to describe a variety of interactions
F(C)(r,-j) = VV(r;;), for a potential V. They are also asso-
ciated with the equation of state of the DPD fluid (see
Ref. [14]) since the magnitude a = a;; of the conservative
force is determined by the dimensionless compressibility

ke,

“IN, — 1
a= kBTkim’ 4)
2apppp
where a = 0.101 = 0.001. The coarse-graining parameter
N,, is defined so that the mass of a DPD particle is N,,
times the mass of a single molecule,

M
N, = —. (%)
m

Modifications in the conservative force can be made in
order to model the repulsive interaction between wall
particles and DPD particles. This can be implemented by
employing layers of frozen DPD particles at the wall in
combination with bounce-back reflections. The conserva-
tive force coefficient of the fluid-solid interactions is ad-
justed to achieve no-slip conditions at the wall and desired
density level in the bulk of the flow [15].

A typical density profile for a Lennard-Jones fluid with
k~! = 15.36 is shown in Fig. 1. We simulate Poiseuille
flow and details of the DPD and corresponding MD simu-
lations can be found in Ref. [16]. The density fluctuations
for MD and DPD corresponding to N,, = 1 are similar,
with the main difference being the large values of the DPD
density at the wall. As N,, increases, the density fluctua-
tions in the DPD simulations also increase, with the N,, =
5 case exhibiting very large values at the wall and also
inside the flow domain. This is not a desired effect, because
we expect the fluctuations to decrease as we approach the
continuum, i.e., N,, — 0.

We note that the no-slip boundary condition in Poiseuille
flow can be accurately implemented by numerical period-
icity, thus avoiding the explicit modeling of wall-particle
and DPD-particle interaction. This was demonstrated re-
cently in Ref. [17], where it was proposed to simulate two
counter-flowing Poiseuille flows using periodic boundary
conditions. Specifically, a rectangular domain is doubled in
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FIG. 1 (color online). Density profiles for Poiseuille flow. The
domain extends from one wall to the center line of the channel.

size in the cross-flow direction with the flow driven by
applying a body force to each particle. The direction of the
force is opposite in the two halves of the domain. This
periodic Poiseuille flow method (PPFM) produces a flow
with uniform averaged density profile. The absence of
density artifacts make this method useful for studying the
bulk Poiseuille flow (in the continuum limit), i.e., without
any density oscillations associated with the presence of
solid boundaries. While PPFM effectively eliminates den-
sity artifacts, it does not model any specific wall structure
and cannot be applied in general nonperiodic flow systems.
We present next a new model that implements the no-slip
boundary condition while at the same time can target a
prescribed density profile, i.e., flat or oscillatory.

Let us consider a wall perpendicular to the z axis and
located at z = 0. The wall is moving with the velocity ‘7W
remaining in z = 0 plane. On each particle within specified
distance from the wall we apply a force F" directed
perpendicular to the wall, positive in the direction pointing
normal into the fluid region. The magnitude of the force
F" depends on the distance from the wall and is iteratively
recomputed based on the estimated density fluctuations as
described next. We consider a subregion of the computa-
tional domain of width L adjacent to the wall and divide it
into bins of size & (see Fig. 2). In general, L should be
greater than or equal to the cutoff radius r.. The value of &
can be chosen based on the desired resolution of the
simulation results. The total number of bins is then N, =
L/h, and we number them in increasing order away from
the wall, so that the bin adjacent to the wall has index i, =
1, and the furthest bin from the wall has index N,,. During
the simulations in each bin i, the time-averaged density
ps(ip) is collected over a specified number of time steps
N,,. Next, the values of p, are locally averaged over (up to)
n,, bins and compared to desired density values p, aver-
aged over the same bins. Specifically, for the bin i, the
densities are averaged over the bins with indices from i, =
max(i, — n,, + 1, 1) to i;. The values of i, for different
bin indices for specific value of n,, = 3 used later in this
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FIG. 2. Sketch illustrating the concept of adaptive boundary
condition. The sketch corresponds to the case with parameters
nay =2 and N, = 5 (defined in the text). The bins are shown
with dashed lines. The bin indices i, are shown in a lower part of
the bins. The desired (uniform in this case) density level p, is
shown with a dotted line. The DPD density profile p is shown
with a dash-dotted line. The time-averaged density levels p, in
the bins are shown with thin solid lines. The locally averaged
density levels are shown with thick solid lines. The densities are
averaged over the bins with indices from i, = max(i, — n,, +
1, 1) to i;,. These indices are listed in the upper part of the bins. If
locally averaged density is higher than desired density the force
from the wall F Y(i ») is increased (shown with the arrow pointing
away from the wall). If the averaged density is lower, the force is
decreased (shown with the arrow pointing toward the wall).

Letter are (i, i,): (1,1), (2,1), (3,1), (4,2), (5,3), etc. The
case with n,, = 2 is illustrated in Fig. 2. The force F" (i,)
acting on the particles in bin i, is then updated according to

Shopl(i
“Wp(”—1> (6)

FW(i,) = FY(i,) + C Cfgggf

FY(ip) (ip) w 57, pall)
where Cy, is a positive constant of order one. After the
force is updated, new values of p, are computed and the
iterative process continues. The wall force F" is added to
the particles within distance L from the wall at each time-
integration step. The random and dissipative force contri-
butions from the wall are computed as in Refs. [9,18]. In
addition, when fluid particles penetrate into the wall region
we perform a ““bounce-back” reflection of these particles,
i.e., we move them back into the fluid region. Typically, we
start the simulations with the wall force " = 0 in all bins.
We let the DPD fluid equilibrate for a short time (about
1000 steps). As a result large density fluctuations form next
to the wall. Next, we apply the adaptive procedure de-

scribed above. Once the desired density fluctuations are
obtained, we collect statistical data from the simulations.
We refer to this procedure as adaptive boundary conditions
(ABC’s).

To evaluate the performance of the proposed model, we
have simulated Poiseuille flow using both the periodic
(PPFM) and adaptive (ABC) techniques at different levels
of coarse graining N,, = 5. The fluid we consider is gov-
erned by a modified Lennard-Jones potential with density
pup = 0.8073 and occupies a volume of 34.20 X
8.550 X 34.20; here o is the atomic diameter in MD.
The dimensionless compressibility of the fluid is k' =
15.36 [16]. In DPD units, we have that the length scale is

r, = (Nmp]*)PD>l/30_,
PMD

(7

where the variables marked with the asterisk have the same
numerical values as in DPD but in MD units. The DPD
fluid density pppp is chosen to be 3r.3. The time scale is
determined by setting the shear viscosities of the DPD and
MD fluids equal, thus

Vi re\2
Tppp = —22 (7) T. (8)

The viscosity of DPD fluid for each value of N,, can be
computed using the Lees-Edwards method [19]. The val-
ues of the dynamic viscosity u for different levels of
coarse graining are (N, u): (1,1.04),; (2,1.31), (3,1.55),
(4,1.82), (5,2.15). The random (o = 3) and dissipative
(y = 45) force coefficients are used in the DPD integration
scheme (a modified velocity Verlet method with A = 0.5,
[14]), time step At = 0.02 and temperature kzT = 0.1, all
in DPD units. The DPD simulation parameters can be
obtained using Egs. (4), (5), (7), and (8). All plots, except
for the temperature which is normalized by the equilibrium
temperature kg7 = 0.1, are in reduced MD units.

In the PPFM simulations the domain was doubled in the
z direction and the body force F' = 0.0085 was applied in
the x direction. The simulations were run for 410 000 time
steps and the domain was subdivided in the z direction into
equal bins of size 0.2r,., with the data collected over the last
40 000 steps. The simulation results for N,, = 5 are plotted
in Fig. 3. The DPD density, x velocity, shear stress, and
partial temperatures averaged over both halves of the com-
putational domain are shown. The agreement with incom-
pressible Navier-Stokes solution for Poiseuille flow is good
for N,, = 5. For larger values of N,, we observed devia-
tions and above N,, = 20 an apparent solidification pro-
cess is in place; we are currently investigating such effects
systematically [18].

In the ABC simulations we integrated the DPD equa-
tions for 1000 000 time steps and the statistical data were
averaged over the last 40 000 time steps. A uniform density
profile p, was imposed at pppp = 37, °. Also, we used
L=1r.,, h=02r., n, =3, and Cy = 1; the local den-
sity values were averaged over N,, = 500 time steps.
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remains about the same. For example, for the case consid-
0.8 hénawstr P bamant ered here with N,, =5 the average increase of partial
= iy T temperature dropped by 3—4% and the total temperature
06 J, 1 ] was within 2% of kzT = 0.1.
N 5 L, - Finally, we demonstrate that the ABC approach can be
3 0.4 ] employed to target specific density fluctuations close to the
- Nm=5 . . .
a solid wall. Here, for illustration purposes, we present a
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FIG. 3. Comparison of density, velocity, temperature, and
stress profiles for Poiseuille flow corresponding to adaptive
and periodic boundary conditions (¥,, = 5). The incompressible
Navier-Stokes solution is shown with lines.

Typically, about 50 wall force adjustments in simulations
were enough to obtain desired density values close to the
wall. The simulation results are shown in Fig. 3 for N, =
5; for N,, <5 similar results were obtained. In general,
they are in a good agreement with those obtained from the
PPFM method, although there is a difference in the tem-
perature profile close to the wall.

The reason for an increase of partial temperature in the
normal to the wall direction is the wall force F". In
simulations presented here, an average increase of partial
temperature in the z direction was about 11% while the
total temperature increase was about 4%. It is possible to
affect the temperature close to the wall by modifying the
dissipative force coefficient y of DPD particles. The pro-
cedure we apply for adjusting the temperature is similar to
one used for the density. Specifically, the coeffcient y of
particles in the bin close to the wall is increased if the
temperature is above the desired level in that bin or de-
creased otherwise. This can effectively control the total
temperature; however, the difference between the partial
temperatures in normal and parallel to the wall directions
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FIG. 4. Comparison of density, velocity, temperature, and
stress profiles for Poiseuille flow corresponding to adaptive
boundary conditions and coarse-grained MD results (V,, = 5).

case, where the density fluctuations imposed by boundary
conditions in DPD correspond to the coarse-grained MD
density fluctuations. Specifically, the coarse-grained den-
sity fluctuations close to the wall are obtained from MD
simulations by averaging them in bins of size 0.2r., where
the value of DPD unit of length r. corresponds to N,, = 5;
see Eq. (7). The fluctuations are significant within distance
of 2r,. from the wall and therefore we chose L = 2r, in the
ABC method. In addition, we set h = 0.2r,, N,, = 500,
n,y = 3, and Cy = 1. The desired level for density fluc-
tuations p, in each bin is set based on coarse-grained MD
data. In Fig. 4 we plot the MD and DPD simulation results.
In general, the density, velocity and stress profiles are in
good agreement, although the DPD temperature is in-
creased close to the wall due the aforementioned reasons.
This work was supported by the NSF-IMAG program.
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