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We obtain analytical solutions for the perturbed shock paths
induced by time-varying random motions of a piston moving inside
an adiabatic tube of constant area. The variance of the shock
location grows quadratically with time for early times and switches
to linear growth for longer times. The analytical results are con-
firmed by stochastic numerical simulations, and deviations for
large random piston motions are established.

The English physicist James Joule was perhaps the first to use the
concept of a moving piston in order to demonstrate the

mechanical equivalent of heat in his pioneering studies, almost 2
centuries ago. The moving piston has also been used extensively in
fundamental studies of fluid mechanics and shock discontinuities in
the last century, and this now classical problem has been solved
analytically in one dimension and also in higher space dimensions
(1, 2). It is well known that a shock wave propagating into a
stationary fluid sets it into motion and raises its pressure, temper-
ature, and density. This situation can be physically realized by a
planar, cylindrical, or spherical piston moving at specified speed
into a stagnant fluid. In gas dynamics, in particular, in the context
of normal shock waves, the one-dimensional classical problem
describes a piston moving at constant speed in a tube of constant
area and adiabatic walls; the shock wave is created ahead of the
piston. Closed-form analytical solutions of this flow problem with
general time-dependent piston speeds are difficult to obtain; see
semianalytical solutions in ref. 3 for accelerating and decelerating
pistons that are valid only for short times.

In this article, we revisit the one-dimensional piston problem
within the stochastic framework; i.e., we allow for random piston
motions that may be changing in time. In particular, we superim-
pose small random velocity fluctuations to the piston velocity and
aim to obtain analytical solutions of the stochastic flow response.
Within the context of small random fluctuations, we assume that
the same thermodynamic conditions are valid as in the classical
problem (i.e., that an isentropic region exists between the piston
surface and the shock wave). This assumption is justified by the
theory of weak perturbed shocks, although at the microscopic level,
more complex processes may take place. Note also that the unper-
turbed shock can be strong. For example, it was reported in ref. 4
that a wall, which is adiabatic when rigidly fixed, may become
conducting when it is allowed to have a stochastic motion indepen-
dent of the value of its macroscopic velocity. However, in the
macroscopic models that we develop here, we assume that such
effects are negligible, and thus, all surfaces remain adiabatic.

In the first part of this article, we employ stochastic perturbation
analysis to obtain closed-form analytical formulas for the perturbed
shock paths. The random piston motion is modeled as a stochastic
process following a Markov chain corresponding to various values
of correlation length. The main physical finding extracted from the
analytical solution is that the variance of the location of the
perturbed shock grows quadratically with time at early times, but it
switches to linear growth at later times. In the second part of this
article, we perform high-resolution stochastic simulations by using
a standard Monte Carlo approach and also the polynomial chaos
method based on Wiener–Hermite expansions. The objective is to
confirm the results of perturbation analysis and determine their
validity range by using numerical solutions of the full nonlinear
Euler equations subject to stochastic inputs. More generally, the
stochastic piston problem that we have defined here serves as a

strict testbed for rigorous evaluation of numerical stochastic solvers,
and to this end, we have compared the performance of polynomial
chaos against the Monte Carlo approach. The results depend
critically on the specific value of correlation length, as well as on the
length of time integration. At early times and/or large values of
correlation length, the polynomial chaos method outperforms
(often by orders of magnitude) the Monte Carlo approach. How-
ever, it is not as effective in other cases.

Stochastic Perturbation Analysis
We consider a piston having a constant velocity, Up, moving into
a straight tube filled with a homogeneous gas at rest. A shock
wave will be generated ahead of the piston. A sketch of the
piston-driven shock tube with superimposed random piston
motion is shown in Fig. 1. Given the state ahead of the shock, the
speed of the shock, S, and the thermodynamic states of the gas
behind the shock (i.e., ahead of the piston) are determined in
terms of the piston speed through the conservation of mass,
momentum, and energy (5). For perfect gas with constant
specific heats, these relations are as follows:
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where � � cp�cv is the ratio of specific heats, and C0 is the local
sound speed ahead of the shock. The sound speed behind the
shock can be obtained as follows from Eqs. 1a and 1b:

C2 � �C0
2 � �SUp��1 � Up�S�. [2]

In the following equations, we will normalize all velocities with
C0, and thus, C0 � 1. We now define the stochastic motion of
the piston by superimposing a small stochastic component to the
steady speed of the piston, i.e.,

up�t� � Up�1 � �V�t, ���, [3]

where the amplitude � is small, 0 � � �� 1. Our objective is to
find how the perturbed shock paths due to the random piston
motion deviate from the unperturbed ones; these unperturbed
paths are given as follows:

X�t� � S�t. [4]

Under the small-amplitude assumption, the flow field induced by
this perturbation can be obtained based on the assumption that the
propagation speed in the region behind the shock and ahead of the
piston can be identified as the propagation speed of the unper-
turbed flow quantities, i.e., Up � C, where C is the unperturbed
sound speed behind the steadily moving shock as given by Eq. 2.
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To proceed, we consider the perturbed Riemann’s invariants
and evaluate them at the shock as follows:

�1 � k�vs � j� � vp �
2

� � 1
ap,

with k � C
S � S�Up

1 � �SUp
, [5]

where S� � (dS�dUp), and vp, ap, and j� are the perturbed piston
velocity, the perturbed local sound speed, and the perturbed
Riemann’s invariants, respectively. These invariants are constant
along the unperturbed (straight) characteristic lines. For more
details on this derivation and the assumptions, see Supporting Text,
which is published as supporting information on the PNAS web site.
Fig. 2 shows a sketch of the shock paths induced by random piston
motions. Specifically, the distorted lines show an instantaneous
realization of the piston path and shock path. They are distorted
because of induced reflections, as indicated in the plot by the
characteristic lines. In the sketch, the steady and perturbed piston
paths are indicated by Upt and Upt 	 �	(t), whereas those for the
shock paths are indicated by St and St 	 �
(t). Also, vp(t2n	1) and
vs(t2n) are on the forward characteristic (dx�dt) � Up 	 C; vs(t2n	2),
whereas vp(t2n	1) is on the backward characteristic (dx�dt) � Up 

C. Thus, we determine by the use of the Riemann invariants in Eq.
5, that:

�1 � k�vs�t2n� � vp�t2n	1� �
2

� � 1
ap�t2n	1� [6a]

�1 � k�vs�t2n	2� � vp�t2n	1� �
2

� � 1
ap�t2n	1�. [6b]

By adding Eqs. 6a and 6b to eliminate ap(t2n	1), we obtain the
following recurrence formula:

vs�t2n� � qvp�t2n	1� � rvs�t2n	2�, n � 0, . . . , N, . . . , [7]

where

q �
2

1 � k
and r �

1 � k
1 � k

.

Eq. 7 defines a recursive relationship between the velocities at
the shock and the perturbation of the piston motion vp(t).
Starting at time t0 and iterating up to N, we obtain from Eq. 7
a set of (N 	 1) terms. By eliminating vs(t2), vs(t4) . . . vs(t2N)
from this set, we obtain the following:

vs�t� � q �
n�0

N

�
r�nvp� t2n	1� � �
r�N	1vs� t2N	2� . [8]

If the perturbation of the piston starts at time ts � 0, the zigzag
path of the characteristics coming down to the origin will end on the
piston path; therefore, vs in the last term in Eq. 8 is zero. However,
if ts � 0, the zigzag path will zigzag indefinitely to approach t � 0,
i.e., N3 �. Because r is always less than unity, the last term of Eq.
8 will approach zero for any finite value of vs(t�). Therefore, one can
drop the last term in Eq. 8 to obtain the following:

vs�t� � q �
n�0

N

�
r�nvp� t2n	1� , [9]

where N � � if ts � 0; i.e., the perturbation of the piston starts
at t � 0 or is determined by the last nonzero value of vp(t2N	1).

To make effective use of this relation, we need to obtain the
relationship of the shock locations at t2n, t2n	1, and t2n	2. To this
end, let us denote the shock locations at time t2n and t2n	2 by Xs(t2n)
and Xs(t2n	2), respectively, and the piston location at t2n	1 by
Xp(t2n	1). Assuming that the characteristics are approximated by
straight lines with their slopes given by Up � C, we have the
following:

Xs�t2n� � Xp�t2n	1� � �Up � C��t2n � t2n	1�

Xp�t2n	1� � Xs�t2n	2� � �Up � C��t2n	1 � t2n	2�. [10]

Also, by defining the perturbed path of the shock and the piston
by 
(t) and 	(t), we can express the following:

Xs�t2n� � S�t2n � �
�t2n�,

Xs�t2n	2� � S�t2n	2 � �
�t2n	2�, and

Xp�t2n	1� � Upt2n	1 � �	�t2n	1�.

Finally, by substituting these into Eq. 10, we obtain the following:

t2n	1 � �t2n �
�

C
�	�t2n	1� � 
�t2n��

t2n	2 � �t2n � ���2	�t2n	1� � 
�t2n� � 
�t2n	2��,
[11]

where

� �
C � Up � S

C

 1,

Fig. 1. Sketch of piston-driven shock tube with random piston motion.

Fig. 2. Sketch of shock paths induced by random piston motions.
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� �
C � Up � S
C � S � Up


 1, and

� �
1

C � S � Up

 1.

The above inequalities are due to C � 1 and S � Up.
If we drop the term containing � in Eq. 11, which is consistent

with the small disturbance assumption, the recurrent relation-
ship is very simplified and closed form solutions can be obtained.
(We will retain this term in the subsection below.) With this
simplification we have the following:

t2n	1 � �t2n � ��t2n
2 � ��2t2n
1 · · · � ��nt0 � ��nt.

Eq. 9 then reads as follows:

vs�t� � q �
n�0

N

�
r�nvp���nt� , [12]

and the shock speed is then obtained as follows:

S�Up � vs�t�� � S�Up� �
dS

dUp
vs�t� � S � S�vs�t�,

with the shock path governed by the following:

dXs

dt
� S � S�vs�t�.

By using Eq. 12 and Xs � St 	 �
(t) in the above equation, we
have the following:

�
d


dt
� qS� �

n�0

�

�
r�nvp���nt� , [13]

and by taking 
(0) � 0, we obtain the following:


�t� �
qS�

�
�

n�0

�

�
r�n�
0

t

dt1vp���nt1� . [14]

As a check of Eq. 12, we first consider the simple problem of
a piston with its velocity subject to a small constant perturbation
vp starting at t � 0 (e.g., a step function of size vp). According
to Eq. 13, we have the following:

vs�t� � q �
n�0

�

�
r�nvp� t2n	1� � qvp�
n�0

�

�
r�n � vp ;

i.e., the velocity behind the shock will be Up 	 vp for all t � 0.
The shock speed S will change to S(Up 	 vp), instead of S(Up).

We now consider vp to be a random process with zero mean
and the following covariance:

vp�t� � �UpV�t, �� [15a]


V�t, ��� � 0


V�t1, ��, V�t2, ��� � e

�t1
t2�

A �, [15b]

where A is the correlation time. The above covariance kernel
describes a Markov random process in time. The larger the value

of the correlation time A, the closer the random motion ap-
proaches a fully correlated process; we refer to this as a random
variable case. However, the smaller the value of the correlation
time A, the closer the motion resembles white noise.

By substituting Eq. 15a into 14, we obtain the following:


�t� � qS�Up �
n�0

N

�
r�n�
0

t

dt1V���nt1, �� .

Because of Eq. 15b, we have the following:



�t�� � 0



2�t�� � �UpqS��2 �
n�0

� �
m�0

�

�
r�m	n

��
0

t

dt1�
0

t

dt2e

�

A��nt1
�mt2� .

[16]

The double summation in Eq. 16 can be split into three parts, (i)
the sum of all diagonal terms, (ii) the sum of all the terms above the
diagonal, and (iii) the terms described in detail below. It is evident
that the last two sums are equal. Thus, we have the following:



2�t�� � �UpqS��2	2 �
n�1

� �
m�0

n
1

�
r�n	m�
0

t

dt1

��
0

t

dt2e

�

A��nt1
�mt2�

� �
n�0

�

�r2n��
0

t

dt1�
0

t

dt2e

��n

A �t1
t2�
 .

Both integrals in the above equation can be integrated explicitly
to give the following:



2���� � �UpqS�A���2	2 �
n�1

� �
m�0

n
1

�
r�n	mIn,m���

� �
n�0

�

r2nIn,n���
 , [17]

where � � �t�A, and

In,m��� �
2�

�m �
1

�n	m �e
�m� � e
�n� � 1 � e
��m
�n���,

where m � n. For � �� 1, it is easy to show that In,m � �2. The
summations in Eq. 17 can be performed explicitly to obtain the
following:



2���� � �UpqS�A���2
�2

�1 � r�2 for � �� 1. [18]

For � �� 1, we can neglect the exponential terms in Eq. 18, and
thus,
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In,m��� � �
2�

�m �
1

�n	m for m 
 n

2�

�n �
2

�2n for m � n .

These expressions for In,m can again be summed analytically on
the right side of Eq. 17 to obtain the following:



2���� � �UpqS�A���2	 2��1 � r�
�1 � r2����1 � r�

�
2

�1 � r2��2��1 � r���
, for � �� 1. [19]

For arbitrary values of �, we calculate the quantities in square
brackets in Eq. 17 numerically. Because of the smallness of the
values of r and �, the series converges quickly. Fig. 3 shows the
quantity 

2(�)��(UpqS�A��)2 as a function of � given by Eq. 17, with
Up � 1.25, i.e., corresponding to Mach number of the shock M �
2. The asymptotic formula for small and large � given in Eqs. 18 and
19 are also included in the plot. We observe a qualitative change in
the stochastic response versus time. At early times, the location of
the path scales linearly with time, whereas at later times, it scales
with square root of time [note that the variance 

�2 � (length)2].
This interesting result is consistent with physical intuition, suggest-
ing that at early times convective motions dominate, whereas at
longer times, the diffusion process takes over.

Within the context of small-amplitude random motions of the
piston, we have neglected the last term in Eq. 11 involving �. This
simplification allowed us to obtain closed-form analytical solutions,
as we explained in the previous section. Now, we revisit this
approximation and retain that term, so we employ the following
recurrence formulas:

t2n	1 � �t2n �
�

C
�	�t2n	1� � 
�t2n��, and

t2n	2 � �t2n � ���2	�t2n	1� � 
�t2n� � 
�t2n	2��,

where �, �, and � are given in Eq. 12. For a general n, we have
the following sequence:

t2n � �t2�n
1� � ���2	�t2n
1� � 
�t2�n
1�� � 
�t2n��

t2�n
1� � �t2�n
2� � ���2	�t2n
3� � 
�t2�n
2�� � 
�t2�n
1���

t2�n
2� � �t2�n
3� � ���2	�t2n
5� � 
�t2�n
3�� � 
�t2�n
2���

. . .

t2 � �t � ���2	�t1� � 
�t� � 
�t2��.

[20]

Solving for t2n from the above equations, we obtain the following:

t2n � �nt � ��	�
j�1

n

2	�t2j
1��
n
j � �1 � ��

� �
j�1

n
1


�t2j��
n
j
1 � 
�t2n� � �n
1
�t�
. [21]

Thus, t2n	1 can be expressed as follows:

t2n	1 � �n	�t �
�
�t�

C 
 �
�

C 	2��
j�1

n

	�t2j
1��
n
j � 	�t2n	1�


�
��1 � ��

C �
j�1

n

�n
j
�t2j�. [22]

The shock path is governed by the following:

�
d


dt
� qS� �

n�0

�

�
r�nvp� t2n	1� ,

and taking 
(0) � 0, we have the following:


�t� �
qS�

�
�

n�0

�

�
r�n�
0

t

dt1vp� t2n	1� . [23]

By considering Eqs. 15b and 23 together, we obtain the
following:



�t�� � 0



2�t�� � �UpqS��2 �
n�0

� �
m�0

�

�
r�m	n�
0

t

dt1

��
0

t

dt2e

1
A�t1,2n	1
t2,2m	1� .

[24]

To compute the variance of the induced shock path 

2(t)�, we need
to compute t2n	1. However, Eq. 22 shows that to compute t2n	1, we
have to know the shock path 
(t) at all the previous reflection times
t2j	1 and t2j. To this end, we solve Eqs. 21–24 numerically by
employing an iteration method and setting t2j	1 � ��jt and t2j � �jt
as an initial approximation. As the amplitude of the piston random
motions becomes larger, the characteristic lines will no longer be
linear. Eqs. 10 have to be modified.

In the following section, we perform stochastic numerical
simulations to confirm our findings and establish limitations of
the stochastic perturbation analysis presented in this section.

Fig. 3. Normalized variance of perturbed shock paths. The solid line indicates
perturbation analysis results (see Eq. 17), the dashed line indicates early-time
asymptotic results from Eq. 18, and the dashed-dotted line indicates late-time
asymptotic results from Eq. 19.
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Stochastic Simulations
We perform two types of stochastic simulations to verify the results
of the previous section by following a Monte Carlo approach and
a polynomial chaos approach. We employ the full nonlinear Euler
equations with the extra complication that there is an unsteady
stochastic boundary, namely, the piston position. To this end, a
boundary-fitted coordinate approach is employed to transform the
equations into a stationary domain. The transformed Euler equa-
tions contain stochastic source terms proportional to 
��up��t and

�v�up��t in the momentum and energy equations, respectively.

In Monte Carlo simulations, we use a Markov chain in time to
represent the stochastic input. In polynomial chaos simulations, the
representation of stochastic inputs is expressed by a Karhunen–
Loeve decomposition (see refs. 6 and 7). Specifically, we consider
different representations of the stochastic inputs corresponding to
the following covariance kernel:


V�t1, ��V�t2, ��� � e

�t1
t2�

A , [25]

where A is the correlation length. A corresponding Markov chain
is employed to represent discretely the exponential kernel as
follows:

V0 � 
0

V1 � CV0 � f
1

. . .

Vi	1 � CVi � f
i	1 ,

where

C � e

�t

A and f � �1 � C2 .

In the Monte Carlo simulation, a random piston velocity up �
Up(1 	 �Vi(t, �)) is selected from the above Markov chain as a
stochastic input at each time step ti. In the polynomial chaos
representation, we employ Wiener–Hermite expansions for all
conservative and derived stochastic variables of the following form:

X��� � �
j�0

M

x̂j�j�
����, [26]

where the basis {�j} is formed from the Hermite orthogonal
polynomials of degree p. Here, 
(�) is a Gaussian variable of
dimension N and M is the total number of deterministic coefficients
x̂j, where M 	 1 � (N 	 p)!�(N!p!). We employ the fifth-order
weighted essentially nonoscillatory method in space in order to
capture the shock location accurately and the third-order TVD
Runge–Kutta method in time (see ref. 8 for details).

We now present some results for the following conditions.
Behind the shock, we impose a steady piston velocity Up � 1.25
(normalized by the sound speed ahead of the shock), i.e., corre-
sponding to Mach number of the shock M � 2. Ahead of the shock,
the sound speed is Co � 1 and the pressure is P � 1. We investigate

Fig. 4. Variance of the perturbed shock paths as a function of nondimen-
sional time for different correlation lengths (� � 0.01, and A � 0.5, 1, 2, and
10). The solid line corresponds to Monte Carlo simulations. The dashed line
indicates results from perturbation analysis, the dash-dotted line indicates
results from Eq. 19 for later time, and the dash-dot-dotted line indicates results
from Eq. 18 for early time.

Fig. 5. Variance of the perturbed shock paths as a function of nondimen-
sional time for different perturbation amplitudes (A � 1, and � � 0.2, 0.3, and
0.5). The dotted line corresponds to Monte Carlo simulations, and the solid line
indicates results from perturbation analysis.

Fig. 6. Variance of the perturbed shock paths as a function of nondimen-
sional time for a random variable (fully correlated kernel, A3 �) with ampli-
tude � � 0.01. The dash-dotted line indicates results from perturbation
analysis, and the solid line indicates numerical results from polynomial chaos
simulations.
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the stochastic response for various values of the correlation length
A and of the amplitude of the random piston motion �.

In Fig. 4, we plot the variance of the perturbed shock paths
induced by small random piston motions corresponding to ampli-
tude � � 0.01 and correlation lengths A � 0.5, 1, 2, and 10, obtained
from Monte Carlo simulations (2,000 runs). There is good agree-
ment of the Monte Carlo solutions with the analytical solutions. In
Fig. 5, we plot the variance of the perturbed shock paths induced
by random piston motions corresponding to correlation length A �
1 and amplitudes � � 0.2, 0.3, and 0.5 obtained from Monte Carlo
simulations (3,000 runs). For small amplitudes � � 0.01, 0.1, and 0.2,
good agreement is observed between Monte Carlo simulations and
analytical solution. However, for larger amplitudes, such as � � 0.3
and 0.5, the stochastic simulation deviates from the analytical
solution. We examine this discrepancy in more detail below, but first
we present results from the polynomial chaos simulations.

Fig. 6 shows results from polynomial chaos simulations corre-
sponding to piston motions described by a random variable, i.e., a
fully correlated stochastic process by which A3 �. The polynomial
chaos simulations match the exact analytical solutions quite closely
(i.e., the variance of the shock location grows quadratically with
time) even over a more than two-orders of magnitude change in the
value of the variance. This result verifies the convergence of the
Hermite chaos for this case. Fig. 7 shows results from polynomial
chaos simulations corresponding to piston motions described by a
random process with amplitude � � 0.01 and correlation time A �
1. In the polynomial chaos simulations, the number of stochastic
dimensions of random input is changed from N � 3, 6, 50 to N �
100 (N is also the number of Karhunen–Loeve modes for repre-
senting the stochastic piston motion). By increasing the dimensions
of random input, the polynomial chaos simulations agree better
with the analytical solution longer. However, there is a finite error
after long-time integration, unlike the Monte Carlo simulations.

We now reexamine the effect of neglecting the second term in
Eq. 11, which we included in the refined perturbation analysis of the

previous section. In Fig. 8, we compare the variance of the
perturbed shock paths with large Up 	 vp(t) random piston motions
obtained from Monte Carlo simulations, analytical solutions from
perturbation analysis, and analytical results obtained including the
corrections for larger random piston motions. Significant improve-
ment in the semianalytical results is evident compared with Monte
Carlo simulations.

Summary
The stochastic piston problem is a reformulation, within the sto-
chastic framework, of a classical aerodynamics problem that studies
how small random piston motions affect shock paths. We have
developed an analytical solution for the linearized Euler equations
for the stochastic piston problem. Specifically, Eqs. 17–19 represent
the main analytical results of this article. The first equation gives the
full analytical expression, whereas the last two equations give
asymptotic results for early and longer times, respectively. They
reveal that the variance of the location of the perturbed shock paths
initially grows quadratically with time and switches to linear de-
pendence for longer times. The stochastic numerical simulations
presented in this article confirm the results and show good agree-
ment with the analytical solution for up to 20% amplitudes of the
random piston motion compared with the mean steady motion.
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Fig. 7. Variance of the perturbed shock paths for � � 0.01 and A � 1
obtained from polynomial chaos simulations with stochastic dimensions N �

3, 6, 50, and 100.

Fig. 8. Variance of the perturbed shock paths as a function of nondimen-
sional time for relatively large piston motions (A � 1, and � � 0.1 and 0.3).
Thick solid and thick dashed lines correspond to large-amplitude perturbation
analysis. The dotted line indicates results from Monte Carlo simulations, and
the dashed-dotted line indicates results from small-amplitude perturbation
analysis.
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