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We investigate subcritical resonant heat transfer in a heated periodic grooved channel
by modulating the flow with an oscillation of random amplitude. This excitation
effectively destabilizes the flow at relatively low Reynolds number and establishes
strong communication between the grooved flow and the Tollmien–Schlichting channel
waves, as revealed by various statistical quantities we analysed. Both single-frequency
and multi-frequency responses are considered, and an optimal frequency value is
obtained in agreement with previous deterministic studies. In particular, we employ a
new approach, the multi-element generalized polynomial chaos (ME-gPC) method, to
model the stochastic velocity and temperature fields for uniform and Beta probability
density functions (PDFs) of the random amplitude. We present results for the heat
transfer enhancement parameter E for which we obtain mean values, lower and upper
bounds as well as PDFs. We first study the dependence of the mean value of E on
the magnitude of the random amplitude for different Reynolds numbers, and we
demonstrate that the deterministic results are embedded in the stochastic simulation
results. Of particular interest are the PDFs of E, which are skewed with their peaks
increasing towards larger values of E as the Reynolds number increases. We then
study the effect of multiple frequencies described by a periodically correlated random
process. We find that the mean value of E is increased slightly while the variance
decreases substantially in this case, an indication of the robustness of this excitation
approach. The stochastic modelling approach offers the possibility of designing ‘smart’
PDFs of the stochastic input that can result in improved heat transfer enhancement
rates.

1. Introduction
Convective heat transfer in grooved channels is a prototype problem, representative

of a wide spectrum of engineering applications, such as heat exchangers, biomedical
devices, cooling of microelectronic components, etc. It has been found in Ghaddar
et al. (1986b, c) that inducing oscillations in the driving flow is an effective approach
in improving substantially heat transfer rates. In the past two decades, this method,
which is often called resonant heat transfer enhancement, has been widely studied
numerically and experimentally (see Ghaddar et al. 1986b, c; Patera & Mikic 1986;
Amon & Mikic 1985; Amon et al. 1992; Greiner 1991; Herman & Kang 2001; Chung
& Tucker 2004, and references therein). In these studies precise sinusoidal excitations
were considered and precise knowledge of thermal boundary conditions was assumed.
This is particularly important for the numerical simulations, where excitations are
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typically introduced as prescribed deterministic functions. In the current work, we
present a new modelling approach for unsteady convective heat transfer, where such
constraints are relaxed and the excitations are described as stochastic processes. In
particular, we study enhancement of heat transfer in a periodic grooved channel due
to stochastic excitation. The stochastic simulations allow us to obtain lower and upper
bounds of the Nusselt number as well as probability distributions, thus making the
comparison of the simulation results with the experimental results more meaningful.
In addition, the stochastic analysis readily provides measures of the sensitivity of the
system while the richer and high-dimensional stochastic output can aid significantly
in gaining deeper understanding of the momentum and heat transport mechanisms.

The simplest approach to stochastic numerical simulations is the Monte Carlo (MC)
methods. Due to the slow convergence of MC methods, this approach requires a rather
large number of samples, i.e. a large number of solutions of deterministic equations.
Perturbation methods have been developed and applied to stochastic mechanics but
they are effective only for a small degree of perturbation (see Kaminski & Hien 1999;
Kaminski & Carey 2005; Emery 2001).

To model the stochastic velocity and temperature fields, we employ a new method
based on polynomial chaos, a non-statistical approach to represent stochasticity.
Polynomial chaos was pioneered by Wiener (1938) to represent a Gaussian process as
the span of Hermite polynomial functionals. Ghanem and Spanos combined Wiener
chaos with a finite element method to model uncertainty in solid mechanics (see
Ghanem & Spanos 1991; Ghanem 1999b, c) and also provided the basic framework
of the method. A useful extension, termed generalized polynomial chaos (gPC), was
proposed in Xiu & Karniadakis (2002) based on the correspondence between the
probability density functions (PDFs) of certain random variables and the weight
functions of orthogonal polynomials of the Askey scheme. Wiener chaos has also
been applied to classical stochastic differential equations (SDEs) with some success,
especially on the theoretical front (see Holden et al. 1996). For some linear SDEs,
such as the diffusion filtering model, Wiener chaos can be effective when integrated
with a recursive scheme (see Lototsky, Mikulevicius & Rozovskii 1997). Stochastic
Navier–Stokes equations were studied theoretically by Wiener chaos in the recent
work of Mikulevicius & Rozovskii (2004). However, in certain applications there are
some serious limitations of Wiener chaos and several papers in the literature have
focused on this (see Orszag & Bissonnette 1967; Crow & Canavan 1970; Canavan
1970; Kahng & Siegel 1970; Chorin 1974; Hogge & Meecham 1978). Generalized
polynomial chaos, including Wiener chaos as a subset, converges to a second-
order random process exponentially (p-convergence) with respect to a certain PDF.
p-convergence of gPC was studied in Xiu & Karniadakis (2002), Frauenfelder, Schwab
& Todor (2005) and Babus̆ka, Tempone & Zouraris (2004).

Along a different line, Deb, Babus̆ka & Oden (2001) employed finite elements
in the random space to approximate the stochastic dependence of the solution
starting from the deterministic finite element theory. Such an approach shows
k-convergence (following the notation in Babus̆ka et al. 2004) as the deterministic finite
element method does, where k denotes the element size in the random space. In Wan
& Karniadakis (2005, 2006), a multi-element generalized polynomial chaos (ME-gPC)
approach was proposed, which shows kp-convergence for differential equations with
random inputs. That is, ME-gPC combines the polynomial chaos concept with the
finite element decomposition approach. Employing adaptivity, ME-gPC can be very
effective in dealing with stochastic dynamical systems containing bifurcations, a
classical example for which Wiener chaos fails (see Orszag & Bissonnette 1967). One
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common property to all the polynomial chaos approaches is that the stochastic
differential equation is reduced to a high-dimensional deterministic system by
employing a standard Galerkin projection.

In this paper, we employ ME-gPC to study heat transfer enhancement in a two-
dimensional grooved channel. This geometry was introduced in Ghaddar et al.
(1986b, c) and we use it here for comparisons with corresponding deterministic
simulations reported therein. The excitation is an oscillation of random amplitude
superimposed on the main deterministic flow. Based on the global energy balance
presented in Ghaddar, Karniadakis & Patera (1986a), we derive proper numerical
schemes for the reduced coupled deterministic PDE system from polynomial chaos
for fully developed flow. We consider two different stochastic inputs corresponding to
uniform and Beta PDFs, and perform simulations at three different Reynolds num-
bers, i.e. Re = 225, 525, 825. We present results for the Nusselt number expressed as a
heat transfer enhancement parameter E for different excitation frequencies, where the
optimal frequency for heat transfer enhancement is obtained from the mean stochastic
response. We study, in particular, the PDFs of E as well as its dependence on the amp-
litude and the frequency of the excitation. Using some statistics, e.g. variance and cor-
relation, we demonstrate the uncertainty distribution and propagation in the flow field.

This paper is organized as follows. We first provide an overview the ME-gPC
approach in the next section. Subsequently, we present the governing Navier–Stokes
equations and the corresponding numerical schemes in § 3 including some details, see
the two Appendices. In § 4 we present the numerical results and we conclude the
paper with a short summary in § 5.

2. Overview of ME-gPC
The polynomial chaos expansion is a spectral representation for second-order

random processes using orthogonal polynomials in the random space as the trial
basis. The original polynomial chaos proposed by Wiener (1938) employs the Hermite
polynomials in the random space as the trial basis. Hermite chaos was employed for
solutions of differential equations with stochastic coefficients by Ghanem and Spanos
who provided the basic framework. An extension, called ‘generalized Polynomial
Chaos (gPC)’ was introduced in Xiu & Karniadakis (2002, 2003). This extension
includes a family of orthogonal polynomials (the so-called Askey scheme) from which
the trial basis is selected and can represent non-Gaussian processes more efficiently;
it includes the classical Hermite polynomial chaos as a subset. Based on gPC, the
multi-element generalized polynomial chaos was developed in Wan & Karniadakis
(2005, 2006) to enhance the efficiency of gPC, where the random space is decomposed
into random elements and the orthogonal local basis is maintained numerically.

Specifically, a general second-order random process X(ω) can be expressed by gPC
as

X(ω) =

∞∑
i=0

âiΦi(ξ (ω)), (2.1)

where ω is the random event and Φi(ξ (ω)) are polynomial functionals of degree p in
terms of the d-dimensional random variable ξ = (ξ1, . . . , ξd). We assume that the ξi

are independent. The family {Φi} is an orthogonal basis with orthogonality relation

�[ΦiΦj ] = �[Φ2
i ]δij , (2.2)

where δij is the Kronecker delta, and �[·] denotes the expectation.
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Figure 1. Schematic of the decomposition and mapping in the multi-element generalized
polynomial chaos (ME-gPC).

For a certain random vector ξ , the gPC basis {Φi} can be selected in such a way
that its weight function has the same form as the PDF of ξ . The corresponding type
of polynomials {Φi} and their associated random variables ξ can be found in Xiu &
Karniadakis (2002).

The global gPC expansions work effectively for many physical applications.
However, increasing the polynomial order may not be efficient for some problems, e.g.
problems with random frequencies or discontinuities. Based on gPC, the multi-element
extension (ME-gPC) decomposes the random space into finite elements as in the
deterministic finite element methods. The basic idea of ME-gPC is shown in figure 1,
where the support [a, b] of the one-dimensional random variable ξ is decomposed into
elements ek := [ak, bk]. For a d-dimensional case, ek := ×d

i=1[ak,i, bk,i]. A new random
variable ξ k, k = 1, 2, . . . , N , is defined in each random element, ek , as

ξi =
bk,i − ak,i

2
ξk,i +

bk,i + ak,i

2
, i = 1, 2, . . . , d, (2.3)

with a re-scaled PDF (see Wan & Karniadakis 2006)

fk(ξ k) =
f (ξ (ξ k))

Pr(ξ ∈ ek)

d∏
i=1

bk,i − ak,i

2
, k = 1, . . . , N; i = 1, . . . , d, (2.4)

where N is the number of random elements and f (ξ ) is the PDF of ξ , Pr(ξ ∈ ek) =∫
ek

f (ξ ) dξ is the probability that ξ is located in random element ek . We note that the
support of ξ k is [−1, 1]d due to the linear map (2.3). The desired random field u(ξ ) can
be first approximated locally by gPC, where the degree of perturbation is effectively
decreased by the linear transform (2.3) from O(1) to O( 1

2
(bk,i − ak,i)). Subsequently,

the statistics can be obtained by gathering the information from all random elements∫
B

g (u(ξ )) f (ξ ) dξ ≈
N∑

k=1

Pr(ξ ∈ ek)

∫
[−1,1]d

g(ûk(ξ k))fk(ξ k) dξ k, (2.5)

where B is the support of ξ , g(·) is any integrable function of random field u(ξ ),
and ûk(ξ k) is the approximated local random field in element ek . Formulae for the
commonly used statistics are presented in Appendix B.

Since the PDF of ξ is also decomposed together with the random space, the
orthogonality of gPC in the entire random space will be, in general, lost in random
elements. For uniform random inputs, the Legendre chaos can be employed locally due
to the nice properties of uniform distribution; however, for other distributions the local
orthogonality can be maintained numerically ‘on-the-fly’ (see Wan & Karniadakis
2006). For problems related to discontinuity in random space, an adaptive ME-gPC
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Figure 2. Schematic of the geometry of a periodically grooved channel.

scheme first proposed in Wan & Karniadakis (2005) can be adopted to improve the
convergence of gPC.

3. Governing equations
The geometry to be considered is shown in figure 2, which is a two-dimensional

grooved channel with periodicity length L. The flow is assumed to be fully developed
in the x-direction. Natural convection, variation of thermal properties and non-fully
developed effects are all assumed to be negligible in this work.

We first define a stochastic flow rate condition

Q(t; ω) =

∫ ∂DT

∂DB

u(x, y, t; ω) dy = 4
3
(1 + ηX(t; ω)), (3.1)

where X(t; ω) is a second-order random process and η is a constant indicating
the degree of perturbation. The value of Q(t; ω) is independent of x due to mass
conservation. We assume that the time average of X(t; ω) is zero. In particular, we
focus on

X(t; ω) =

M∑
i=1

ξi sin 2πΩF,it (3.2)

with ξi being independent identically distributed (i.i.d.) random variables, in other
words, we are considering periodically correlated (cyclostationary) random processes
(see Gladyshev 1961). In engineering, such random inputs correspond to amplitude
modulation of signals. For the flow rate given by (3.1), the time-averaged flow rate is
Q̄ = 4/3, where

Q̄(ω) =
1

τ

∫ t0+τ

t0

(∫
x=L

u(y, t; ω) · n dl

)
dt. (3.3)

with n being the outward normal. We note that by introducing such a random flow
rate condition, the velocity field v = ux̂ + v ŷ, the pressure field Π and temperature
field T will be random.

For the velocity field we have the incompressible Navier-Stokes equations

∂v

∂t
+ (v · ∇)v = −∇Π + Re−1∇2v in D, (3.4a)

∇ · v = 0 in D, (3.4b)
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where Re = 3Q̄/4ν is the Reynolds number with ν being the kinematic viscosity. The
appropriate boundary conditions for the velocity are

v(x, t; ω) = 0 on ∂DT and ∂DB, (3.5a)

v(x, y, t; ω) = v(x + L, y, t; ω), (3.5b)

corresponding to no-slip and periodicity, respectively. For the pressure we require
that (see Ghaddar et al. 1986a)

Π(x, t; ω) = −Πx(t; ω)x + Π̂(x, t; ω), (3.6a)

Π̂(x, y, t; ω) = Π̂(x + L, y, t; ω). (3.6b)

For the temperature field T (x, t; ω) the convection equation can be expressed in
conservation form as

∂T

∂t
+ ∇ · (vT ) = (Re Pr)−1∇2T , (3.7)

where Pr = ν/α is the Prandtl number with α being the thermal diffusivity. We first
subtract a linear term from T , which yields

T (x, t; ω) = γ (ω)x + θ(x, t; ω). (3.8)

We extend the global conservation of energy presented in Ghaddar et al. (1986a) to
a stochastic case and obtain the unknown term γ (ω) as

γ (ω) =
αq ′(ω)

κQ̄(ω)L
, (3.9)

where κ is the thermal conductivity of the fluid and q ′ is the total heat transfer rate
into the domain

q ′(ω) =

∫
∂D

q ′′(x; ω) dl. (3.10)

Here q ′′(x; ω) denotes the heat flux at the boundaries. In terms of θ , equation (3.7)
can be written as

∂θ

∂t
+ ∇ · (v(θ + γ x)) = (Re Pr)−1∇2θ (3.11)

subject to the following boundary conditions:

κ∇θ · n = q ′′(x) − κγ nx on ∂DT and ∂DB, (3.12a)

θ(x, y, t; ω) = θ(x + L, y, t; ω), (3.12b)

where nx is the component of n in the x-direction.
The random fields v(x, t; ω), Π(x, t; ω) and θ(x, t; ω) are modelled by ME-gPC

in this work. In Appendix A, we present the ME-gPC expansions of the governing
equations. The physical space is discretized by a spectral/hp element method (see
Karniadakis & Sherwin 2005) and a typical mesh is shown in figure 3, where 42
elements and eighth-order Jacobi polynomials are used to obtain converged results.



Stochastic heat transfer enhancement in a grooved channel 261

x

y

0 1 2 3 4 5 6
–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

B

A
D

E

C

Figure 3. A typical spectral/hp element mesh for the physical discretization. The dotted lines
are based on quadrature points of Jacobi polynomials. The reference points A–E defined along
the straight line x = 3.2 are used in § 4.5.

Re Pr L l a
225–825 1.0 6.6666 2.2222 1.1111

Table 1. Physical parameters used in this work. The lengths are non-dimensionalized with
the channel half-width h.

4. Numerical results
4.1. Notation

To get an overall measure of the transport characteristics of the fully developed
flow, we first define a time-averaged global Nusselt number Nu as in Ghaddar et al.
(1986 c)

Nu(ω) = L

(
1 +

2a

L

)2/∫
∂DB

〈θ(ω) − θb(ω)〉t ds|∂DB
, (4.1)

where θb is a reference temperature taken to be the (periodic part of the) mixed-mean
temperature at x = 0,

θb(ω) =

〈∫ ∂DT

∂DB

u(x = 0, y, t; ω)θ(x = 0, y, t; ω) dy

Q(t; ω)

〉
t

, (4.2)

and 〈〉t refers to the time-average over a cycle of the flow, t < t ′ < t + Ω−1
F . The

transport enhancement parameter is defined as

E =
Nu(Re, η, Pr)

Nu(Re, η = 0, Pr)
. (4.3)

For the purpose of comparison, the parameters in table 1 are the same as those in
Ghaddar et al. (1986 c).
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Figure 4. Mean of E with error bars indicating the standard deviation for uniform (a) and
Beta (b) random inputs. E(ξ̄ = 0.5) is the deterministic solution for the mean input. Re = 525.

4.2. Mean values and bounds of E

We first assume that in the random flow rate condition (3.1) X(t; ω) takes the simple
form

X(t; ω) = ηξ sin 2πΩF t, (4.4)

where ξ is a random variable defined in [0, 1] and η = 0.2. Compared to Q̄, the
mean amplitude ηξ̄ = 0.1 indicates 10% perturbation. For the random amplitude the
coefficient of variance is σa/�[ηξ ] = 58% for the uniform distribution and 38% for
the Beta(2, 2) distribution, where σa is the standard deviation of ηξ .

In figure 4, we show the mean of E with ‘error bars’ for uniform (upper) and
Beta (lower) random inputs at different excitation frequencies, where both the upper
and lower error ranges are equal to the standard deviation of E. ME-gPC up to
N = 3 and p = 5 is employed to ensure the numerical convergence. We first examine
the results for the uniform random inputs. We observe that the mean of E is
sensitive to the frequency of excitation force, and the maximum value is reached at
ΩF ≈ 0.15. For comparison, we also show the corresponding deterministic solutions
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at E(ξ̄ = 0.5), where 0.5 is the mean of the uniform random variable ξ . We can see
that the mean of E for different frequencies does not coincide with the corresponding
deterministic solution, since the relation between ξ and E is nonlinear. Furthermore,
E(ξ̄ = 0.5) � Ē when ΩF � 0.16; otherwise, E(ξ̄ = 0.5) � Ē. This means that the
relation between E and ξ changes for different frequencies. However, the deterministic
and stochastic mean solutions give the same optimal frequency. As ΩF approaches
0.15, the standard deviation increases gradually. This can be interpreted as a result
of sensitivity of the heat transfer enhancement to the excitation frequency. Also, it
is seen that the difference between Ē and E(ξ̄ = 0.5) reaches a maximum value at
ΩF = 0.15. For Beta random inputs, similar properties are observed.

In Ghaddar et al. (1986b), it was found that the least-stable modes of grooved
channel flow closely resemble Tollmien–Schlichting channel waves. The frequency Ω1

of the first least-stable mode can be predicted by the Orr–Sommerfeld dispersion
relation; it is 0.142 for the geometry used in this work. In Ghaddar et al. (1986 c),
it was verified that the optimal frequency for heat transfer enhancement is consistent
with the Tollmien–Schlichting frequency for the linear system and shifts a little for
the nonlinear system. The optimal frequency ΩF = 0.15 given by the polynomial
chaos method agrees well with the aforementioned deterministic studies. We note
that the standard deviation (indicated by the length of ‘error bars’) of E does not
reach the maximum value at ΩF = 0.15 as the mean does. The excitation frequency
for the largest standard deviation is actually a little larger than ΩF = 0.15. This
implies that the optimal frequency depends on the amplitude. Since the mean of E

has a maximum value at ΩF = 0.15, we know that

∂Ē

∂ΩF

∣∣∣
ΩF =0.15

=

∫ 1

0

∂E

∂ΩF

f (ξ ) dξ |ΩF =0.15 = 0, (4.5)

where f (ξ ) is the PDF of ξ . We now consider the first-order derivative of the variance
of E in terms of ΩF :

∂
(
σ 2

E

)
∂ΩF

= 2

∫ 1

0

E
∂E

∂ΩF

f (ξ ) dξ − 2

(∫ 1

0

Ef (ξ ) dξ

)(∫ 1

0

∂E

∂ΩF

f (ξ ) dξ

)
. (4.6)

Assuming that the optimal frequency does not depend on the amplitude, say, for any
ξ the optimal frequency is ΩF = ΩM , we then have for any ξ

∂E

∂ΩF

∣∣∣∣
ΩF =ΩM

= 0, (4.7)

which implies that both the mean and standard deviation of E should reach the
maximum values at ΩF = ΩM . However, this contradicts the numerical results in
figure 4. Thus, the optimal frequency should vary in terms of the amplitude. In
figure 5, we demonstrate the dependence of optimal frequency on the amplitude
using deterministic simulations, where it can be seen that the optimal frequency for
amplitude 0.1 is 0.15 whereas it is 0.163 for amplitude 0.2. In Ghaddar et al. (1986 c)
the excitation force with an amplitude 0.2 was studied and an optimal frequency for the
nonlinear system was found to be 0.168, which agrees very well with our result 0.163.

The above observations show that the choice of exact optimal frequency is a
complicated problem, which is related to many factors. When randomness is present,
a better way to select the optimal frequency is to check the mean response since it is
more reasonable to assume that a factor, e.g. the amplitude, is random with a certain
PDF.
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Figure 5. Dependence of the optimal frequency on the amplitude at Re = 525.

4.3. Probability density functions of E

We now study the PDFs of the transport enhancement parameter E under different
types of random inputs. We study here only the case with ΩF =0.15, which
corresponds to the maximum response for η =0.2. Based on the solutions of
polynomial chaos, all PDFs shown in this section are obtained by a standard Monte
Carlo method with 1 000 000 realizations.

First, we assume that ξ is a uniform random variable, i.e. ξ ∼ U [0, 1], and let
E = E(ξ ). Using the properties of the PDF, we obtain the PDF of E

fE(E) = E(1)(ξ (E))−1, (4.8)

where superscript (n) indicates the nth-order derivative. The first-order derivative of
fE can be obtained from the chain rule of calculus as

f
(1)
E (E) = − E(2)(ξ (E))

E(1)(ξ (E))3
. (4.9)

We now examine the PDF of E at Re = 225, which is shown in figure 6. The PDF
of E is not uniform, unlike the input, and has a minimum at E ≈ 1.15, which means
that the second-order derivative of E(ξ ) should be zero at E ≈ 1.15 according to
equation (4.9). Thus, the support of E can be roughly divided into two parts:

Part I: 1 � E � 1.15, where the probability density decreases and the first-order
derivative of fE increases to zero.

Part II: E � 1.15, where the probability density increases and the first-order
derivative of fE increases from zero.

Similar phenomena were shown in Ghaddar et al. (1986 c) for deterministic
simulations at Re = 225. We next check the local behaviour of E. For ξ 
 1
(E is around 1), we assume that

E − 1 ∼ cξβ, c is constant. (4.10)

It is easy to obtain the PDF of E as

fE(E) ∼ cE(E − 1)(1−β)/β, (4.11)
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Figure 6. PDF of E with uniform random inputs. Re = 225.
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Figure 7. PDF of E with uniform random inputs at Re = 525, 825.

where cE is constant. Due to the singularity at E = 1, we obtain that β > 1 consistent
with the deterministic estimation in Ghaddar et al. (1986 c), where β is set to be 2
for small amplitudes. As the amplitude increases, such an estimate will be not valid.
We know that E(2)(ξ ) = 0 when E ≈ 1.15. However, the second-order derivative of
E(ξ ) = cξ 2 is a non-zero constant, which is a contraction. Similarly, we analyse the
part corresponding to large amplitudes with the assumption E ∼ c1ξ

β + c2, which
yields

fE(E) ∼ cE(E − c2)
(1−β)/β . (4.12)

From figure 6, we can see that (1 − β)/β ≈ 1 for large E, which yields β = 1
2
. Such a

result is the same as the deterministic estimation in Ghaddar et al. (1986 c).
In figure 7, we show the PDFs of E at Re = 525 and 825. For comparison we

include the results from high-order gPC. We use ME-gPC with a six-element mesh
[0, 0.1, 0.3, 0.5, 0.7, 0.9, 1] (in random space) for Re = 525 and an eight-element mesh
[0, 0.1, 0.3, 1.1/3, 1.3/3, 0.5, 0.7, 0.9, 1.0] for Re = 825. A similar two-part structure
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Figure 8. PDF of E with Beta random inputs at Re = 525, 825.

Re sE(Uniform) kE(Uniform) sE(Beta) kE(Beta)

225 0.10 1.65 0.05 2.13
525 −0.61 2.14 −0.88 3.51
825 −0.68 1.87 −1.20 3.30

Table 2. Skewness sE and kurtosis kE of E for different random inputs and Reynolds
numbers.

is observed in the PDF for Re = 525 but differences arise in the PDF for Re = 825.
For large E, the relation between E and probability density is not linear any more
and becomes more complicated as the Reynolds number increases. For example, in
the range E � 1.4, f

(1)
E (E) > 0 for Re = 525 while f

(1)
E (E) = 0 at E = 1.52 and 1.72

for Re = 825. Using equation (4.9), we know that there exist two stationary points in
the curve E = E(ξ ) for Re = 825 but no stationary points for Re = 525.

As a representative non-uniform random input, we consider the Beta distribution
Beta(2, 2) in [0, 1]. In figure 8, the PDFs of E are shown for Re = 525 and 825.
We use the same meshes as before for ME-gPC. Compared to the symmetric PDF
of Beta(2, 2), the PDFs of E have a clear bias towards larger E and the bias shifts
further as the Reynolds number increases. In table 2 we present the skewness sE and
kurtosis kE of E for different random inputs and Reynolds numbers. In particular,
we notice the negative sE for Re = 525, 825 with the absolute values increasing with
Re. In other words, an asymmetric tail extending out to the left becomes stronger
with Re.

Although the PDF of E is not symmetric, unlike the PDF of random inputs,
it appears that we can estimate the mean of E using E(ξ̄ = 0.5) for a moderate
perturbation (η = 0.2), where ξ̄ = 0.5 is the mean of ξ . In table 3, we compare the
mean of E and deterministic results E(ξ̄ = 0.5), where the percentage of difference
is also given. We can see that the difference is less than 10% for both uniform and
Beta random inputs in the range Re ∈ [225, 825]. For certain random inputs, the dif-
ference increases with the Reynolds number; for a fixed Reynolds number, the
difference for the uniform inputs is larger than that for the Beta inputs because the
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Re Ē(Uniform) σE(Uniform) Ē(Beta) σE(Beta) E(0.5)

225 1.1694(0.28%) 0.1196 1.1664(0.00%) 0.0829 1.1661
525 1.4045(3.65%) 0.2058 1.4344(1.60%) 0.1281 1.4577
825 1.5014(8.41%) 0.2766 1.5945(2.73%) 0.1945 1.6393

Table 3. The mean and standard deviation of E for different random inputs and the
corresponding deterministic E with the mean random inputs.
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Figure 9. Curves of the enhancement ratio E versus the excitation amplitude for different
Reynolds numbers.

PDF of Beta(2, 2) distribution has a maximum at ξ = 0.5 and decreases to zero
at the ends. However, such an approximate analysis is not expected to be valid for
general random inputs with non-symmetric PDFs.

Since the stochastic amplitude is a random variable, any individual realization of
the ME-gPC should correspond to a deterministic simulation; in figure 9 we plot the
E-amplitude curves based on the ME-gPC solutions for different Reynolds number,
where we also compare the ME-gPC predictions with deterministic simulations at
some reference points. We see that the deterministic solutions are indeed included in
the stochastic solutions. In deterministic simulations the common approach to study
the E-amplitude relation is to interpolate the results of E at different amplitudes.
However, such a procedure will usually involve many individual deterministic
simulations to get a good approximation. Thus, ME-gPC provides an effective
approach not only for stochastic studies but also for obtaining deterministic relations
economically.

4.4. Effect of different frequencies on E

Given a periodic covariance kernel K(t, s) = K(t + T , s + T ), a second-order
periodically correlated random process can be expressed by the Karhunen–Loeve
(K-L) decomposition, which takes a form

X(t) =

√
λ0

T
ξ0,0 +

√
2

T

∞∑
n=1

√
λn

[
ξn,1 cos

2nπ

T
t + ξn,2 sin

2nπ

T
t

]
, (4.13)
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Figure 10. Spectra of the mean of E at Re = 525 for case (I). ΩFi
= 0.1, 0.15, 0.2.

where T is the period and {ξi,j } is a set of uncorrelated random variables. The
eigenvalues {λi} can be determined by the correlation length and Fourier coefficients
of the kernel K(t, s) (see Lucor 2004). We assume that the first eigenvalue λ0 = 0
since the corresponding eigenfunction is constant.

To focus on the interaction between ΩF = 0.15 and other frequencies, we first
assume that the energy of each mode is of the same order and consider the following
random condition:

Q(t) =
4

3

(
1 +

0.2

3

3∑
i=1

aiξi sin(2πΩF,i t)

)
, (4.14)

where ξi ∼ U [0, 1] are uniform i.i.d. random variables and ai = 0 or 1. In other
words, we impose three frequencies with i.i.d. random amplitudes in the excitation
force. The Reynolds number is set to Re = 525.

We investigate in detail two cases:

(I): ΩF,i = 0.10, 0.15, 0.20 and (II): ΩF,i = 0.11, 0.15, 0.18.

For both cases, we set ai = 1, i = 1, 2, 3, which means that the standard deviation
of each random amplitude is the same. We use ME-gPC with N = 3 × 4 × 3 = 36
and p = 2 to resolve the problem, where uniform meshes in each random dimension
are employed. We select frequencies according to figure 4: frequencies that introduce
smaller heat transfer enhancement are chosen as a perturbation of the frequency
ΩF = 0.15.

We plot the spectra of mean and standard deviation of E in figures 10 and 11 for
case (I), and in figures 12 and 13 for case II, based on the ME-gPC solutions. We
note that

(i) frequency ΩF = 0.15 is dominant;
(ii) a linear combination of other frequencies with ΩF = 0.15 is present.

It appears that there exists a non-trivial interaction between ΩF = 0.15 and other
frequencies. For case (I), a subharmonic frequency 0.05 emerges in the spectra of
mean and standard deviation; for case (II), more frequencies, e.g. 0.03 and 0.04, are
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Figure 11. Spectra of the standard deviation of E at Re = 525 for case (I).
ΩFi

= 0.1, 0.15, 0.2.
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Figure 12. Spectra of the mean of E at Re = 525 for case (II). ΩFi
= 0.11, 0.15, 0.18.

involved. Since the energy from frequencies other than ΩF = 0.15 is small, the heat
transfer enhancement will be determined mostly by the frequency ΩF = 0.15.

In tables 4 and 5, we compare the mean and standard deviation of E for different
random inputs. Since ΩF = 0.15 is the dominant frequency, we focus on the
difference between one-dimensional random inputs with ΩF = 0.15 (corresponding
to (a1, a2, a3) = (0, 1, 0)) and the aforementioned two cases. The difference in mean is
2.7% and 3.4%, respectively, and the difference in standard deviation is 27% and 28%,
respectively. In other words, the mean of E is almost unchanged while the standard
deviation is effectively reduced. Thus, it appears that the imposed frequencies, other
than ΩF = 0.15, have a much stronger influence on the standard deviation of E than
on the mean value. Such a phenomenon should be the consequence of the previously
mentioned interaction between ΩF = 0.15 and other frequencies.
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Figure 13. Spectra of the standard deviation of E at Re = 525 for case (II).
ΩFi

= 0.11, 0.15, 0.18.

(a1, a2, a3) (1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1) (3, 0, 0) (0, 3, 0) (0, 0, 3)

Ē 1.1793 1.0474 1.1488 1.0089 1.1998 1.4029 1.0683
σE 0.0834 0.0389 0.1142 0.0088 0.1290 0.2054 0.0556

Table 4. Effect of different frequencies on E at Re = 525. Case I: ΩF,i = 0.1, 0.15, 0.2.

(a1, a2, a3) (1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1) (3, 0, 0) (0, 3, 0) (0, 0, 3)

Ē 1.1883 1.0523 1.1488 1.0142 1.2123 1.4029 1.1025
σE 0.0820 0.0423 0.1142 0.0133 0.1363 0.2054 0.0821

Table 5. Effect of different frequencies on E at Re = 525. Case II: ΩF,i = 0.11, 0.15, 0.18.

In many cases, the periodicity exhibits its effect only as a periodic variation at
harmonics of a particular frequency. We next consider the first four harmonics in the
K-L expansion (4.13) using T = 1/0.15. Without loss of generality, we consider the
following random input:

(III): Q(t) =
4

3

(
1 + 0.1 sin 2πΩF t + η

√
2

T

4∑
i=1

√
λiξi sin(2πiΩF t)

)
, (4.15)

with ΩF = 0.15, where ξi ∼ U [−1, 1] are uniform i.i.d. random variables with zero
mean. We consider the following eigenvalues obtained from the periodic covariance
kernel:

λi = 1.2266, 0.6504, 0.3080 and 0.1493.

We take η = 0.1/
√

2λ1/T and the flow rate (4.15) can be rewritten as

Q(t) = 4
3
(1 + 0.2ξ sin 2πΩF t + S(t, ω)),

where ξ is a uniform random variable in [0, 1] as before, and S(t, ω) can be regarded as
the perturbation from the superharmonics. We use ME-gPC with N = 8×4×2×1 = 64
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Ē(Q1) Ē(Q2) σE(Q1) σE(Q2) Ē(Q1)/Ē(Q2) σE(Q1)/σE(Q2)

1.4261 1.4029 0.1675 0.2054 1.0165 0.8155

Table 6. Effect of superharmonic frequencies on E at Re = 525 for case (III).

and p = 2 to achieve numerical convergence. Let Q1 indicate the above flow rate
and Q2 the flow rate without S(t, ω). In table 6, we present the mean and standard
deviation of E for Q1 and Q2. We observe that the superharmonic frequencies
increase Ē by about 1.7% while decreasing σE about 18.5%, which is consistent with
the observations from cases (I) and (II).

In summary, for a given geometry and random (periodically correlated) flow rate
condition, there exists a critical frequency which is most effective for heat transfer
enhancement. Furthermore, to reach the maximum heat transfer enhancement, such
a critical frequency should be related to the largest eigenvalue, i.e. the largest degree
of perturbation. Other frequencies are, in general, not effective for increasing Ē;
however, they can significantly decrease σE .

4.5. Correlation between cross-flow velocity and temperature

In Ghaddar et al. (1986 c) the relation between cross-flow velocity and heat transfer
enhancement was studied by deterministic simulations. The approach was to compare
the optimal frequencies for cross-flow velocity and E. It was found that the two
optimal frequencies agree with each other qualitatively although there exists a slight
difference. We know that the cross-flow velocity is mainly due to the oscillation
imposed in the inflow boundary condition (see Ghaddar et al. 1986b). Here we
measure the relation between cross-flow velocity and temperature quantitatively using
the correlation at reference points, which in turn reflects the influence of the imposed
oscillating flow rate condition on the heat transfer enhancement.

Along the straight line x = 3.20, −1.89 � y � 0.73, we select 40 equidistant
grid points, denoted as yi, i = 1, 2, . . . , 40. Specifically, we define the following
five reference points (see figure 3): A(3.20, −0.90), B(3.20, −1.89), C(3.20, −1.22),
D(3.20, −0.80) and E(3.20, 0.71). We use vi to denote the cross-flow velocity at grid
yi , and Tj the temperature at grid yj . Let ρ denote the correlation between vi and Tj .
For each pair (vi, Tj ), we have the correlation

ρij =
〈(vi − v̄i)(Tj − T̄j )〉

σv,iσT,j

, (4.16)

where σf,i denotes the standard deviation of the variable f . We know that −1 � ρij �
1 and a large absolute value of ρij corresponds to a large correlation. In figure 14, we

plot the correlation matrix ρij for uniform inputs with ΩF = 0.15 at t = T̂ , where T̂ is
the period of converged solutions. We can see that |ρij | ≈ 1 except in a narrow region,
which implies that the cross-flow velocity and temperature are perfectly correlated.
For any fixed vi , ρij ≈ −1 for Tj at grid points yj ∈ [−1.89, −0.90], corresponding
to the groove part; ρij ≈ 1 for Tj at grid points yj ∈ [−0.62, 0.73], corresponding to
the channel part; ρij increases quickly from −1 to 1 for Tj within the narrow interval
yj ∈ [−0.90, −0.62]. These observations are consistent with the flow physics. It is
known that the cold fluid in the channel part would be forced into the downstream
side of the cavity by the Tollmien–Sclichting travelling wave, then push the hot fluid
from the upstream part of the groove into the channel part. Hence, if the cross-flow
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Figure 15. Evolution of ρij . ξ ∼ U [0, 1] and Re = 525. (a) ΩF = 0.15; (b) ΩF = 0.18.

velocity vi at a certain point yi tends to increase, the temperature in the groove tends
to decrease, corresponding to ρij ≈ −1, since the heat is from the groove to the
channel; the temperature in the channel tends to increase, corresponding to ρij ≈ 1.
Thus, the correlation ρij indicates that the relation between the trends of vi and Tj

is almost linear, which implies that the evolution of temperature can be perfectly
reflected by the evolution of cross-flow velocity.

In figure 15 we plot the time evolution of correlation between point A and other
defined points (B, C, D and E) for Ω = 0.15 in (a) and for ΩF = 0.18 in (b). We
see that the correlation value switches between −1 and 1 periodically except for
the points (ρAD) in the aforementioned narrow transient interval. The correlation for
ΩF = 0.18 shows a sharper transition between −1 and 1, which implies that the
cross-flow velocity and temperature are more correlated for ΩF = 0.18. This does
not conflict with the fact that the optimal frequency is ΩF = 0.15. Since the optimal
frequency corresponds to a larger response in the cross-flow velocity, which implies
that the induced uncertainty is also larger, it is reasonable that the transition region
of ρij is larger for the optimal frequency. Since similar observations are obtained for
other random inputs, the results are not presented here.
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4.6. Visualizations

In this section we present the visualization of the statistics of velocity and temperature.
In figures 16 and 17, we show the mean (a) and standard deviation (b) of velocity and
temperature fields, respectively, for Re = 525 within one period. Since there exists
qualitative similarity between the corresponding statistics for the different random
inputs, we present here only results for the uniform random inputs.

In figure 16, significant mixing at the groove lip is observed in the mean of
cross-flow velocity. The largest standard deviation is located near the groove lip and
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decreases into the channel and groove, which implies that the communication between
the channel and groove is very sensitive to the excitation. In figure 17, a two-wave
structure is observed in isocontours of the mean temperature field. Compared to
corresponding deterministic results (see figure 3 in Ghaddar et al. (1986 c)), the two-
wave structure is not as pronounced because the amplitude 0.2 was used in Ghaddar
et al. (1986 c) while in our simulations the mean amplitude is 0.1 for a uniform random
amplitude in [0, 0.2]. The largest standard deviation is inside the groove and along
the groove lip; however, the standard deviation is small in the channel. By noting the
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large cross-flow velocity along the groove lip and the property of correlation matrix
ρij discussed in the previous section, we know that it is the convection process that
introduces large uncertainty to the temperature in the groove.

5. Summary
We have introduced a new modelling approach to studying unsteady convective heat

transfer, where external excitations are introduced as stochastic processes rather than
as prescribed deterministic functions. This approach is at least two to three orders of
magnitude more efficient than performing standard Monte-Carlo simulations. There
is currently growing interest in quantifying uncertainties in heat transfer, and new
interesting methods are emerging (see Ghanem 1999a; Emery 2001; Wang & Zabaras
2005). These methods can also be employed to more effectively probe the sensitivities
of the system and to gain insight into the flow physics and thermal processes, as we
demonstrate here.

Specifically, we employed multi-element generalized polynomial chaos (ME-gPC) to
investigate heat transfer enhancement in a two-dimensional grooved channel caused
by a periodic flow oscillation of random amplitude; this geometry was first introduced
in Ghaddar et al. (1986 c). The stochastic mean results are in good agreement with
the deterministic studies of Ghaddar et al. (1986 c). In particular, we demonstrated
that the deterministic results are embedded in the stochastic simulation results (see
figure 9). This, in turn, implies that the ME-gPC technique is an effective approach
not only for stochastic studies but also for obtaining deterministic results efficiently.

We first presented the mean values of the heat transfer enhancement parameter E

along with lower and upper bounds, for different excitation frequencies and two
different random inputs corresponding to uniform and Beta probability density
functions (PDFs). At small excitation amplitudes, we found that the optimal frequency
for heat transfer enhancement is ΩF ≈ 0.15, which is close to the eigen-frequency
of the least-stable mode Ω1 = 0.142 of Tollmien–Schlichting (T-S) channel waves at
the same Reynolds number. We also demonstrated that the optimal frequency is a
function of the amplitude of the excitation. For the optimal frequency ΩF = 0.15, we
presented the PDFs of E, which were very different from the uniform and Beta PDFs
of the stochastic inputs. In particular, we found that these PDFs are skewed towards
larger values of E and their peaks increase and move to even larger values of E as the
Reynolds number increases. This result can be exploited in future studies to design
even more effective heat transfer enhancement strategies. More interestingly perhaps,
the stochastic modelling approach offers the possibility of designing ‘smart’ PDFs
of the stochastic input that can result in improved heat transfer enhancement rates.

We also studied the relation between E and the amplitude of the imposed perturba-
tion based on the PDFs of E for uniform random inputs. For a low Reynolds number,
e.g. Re = 225, a linear relation between E and the amplitude is observed for large
E; however, such a relation becomes strongly nonlinear as the Reynolds number
increases. We also studied the effect of frequencies on E using random excitations with
different frequencies (one is the optimal frequency ΩF = 0.15, the other frequencies are
relatively far way from the optimal one.) Compared to the optimal frequency ΩF =
0.15, it appears that other frequencies can reduce the standard deviation effectively but
they affect the mean value very little. Finally, we demonstrated the strong connection
between the cross-flow velocity and temperature through the correlation matrix. This
analysis provided good evidence of the contribution of T-S travelling waves to effective
heat transfer enhancement.
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Appendix A. Application of ME-gPC to Navier–Stokes equations
In § 2, it is shown that the support of the random variable ξ can be decomposed into

N random elements ek , k = 1, 2, . . . , N . In each element ek a new random variable
ξ k with a PDF fk(ξ k) is defined. We note that ξ k is defined in [−1, 1]d . Using fk(ξ k)
as a weight function, we can construct a set of orthogonal polynomials {Φk,i(ξ k)}
satisfying

�k[Φk,iΦk,j ] = �k[Φ
2
k,i], (A 1)

where �k[·] indicates expectation with respect to PDF fk(ξ k).
To employ ME-gPC we need to expand all the random fields spectrally in each

random element ek . Given the local polynomial chaos basis {Φk,i(ξ k)}, the random
fields, e.g. v, Π and θ , can be expressed in random elements ek as

v =

Np∑
i=0

vk,iΦk,i, Π =

Np∑
i=0

Πk,iΦk,i, θ =

Np∑
i=0

θk,iΦk,i, (A 2)

where p is the polynomial order and Np is the total number of modes given by
(d + p)!/d!p!. Substituting (A 2) into equations (3.4) and (3.11) and performing
a Galerkin projection in terms of each mode in {Φk,i}, we obtain the following
deterministic PDE system:

∂vk,m

∂t
+ Nk,m = −Π̂k,m + Re−1∇2vk,m + Π x

k,m x̂, ∇ · vk,m = 0, (A 3a, b)

∂θk,m

∂t
+

1

�k[Φ
2
k,m]

Np∑
i=0

Np∑
j=0

ck
ijm∇ · H i,j = (RePr)−1∇2θk,m, (A 3c)

where ck
ijm = �k[Φk,iΦk,jΦk,m], x̂ denotes the unit vector in the x-direction, H i,j =

vk,i(θk,j + γk,j x) and

Nk,m =
1

�k

[
Φ2

k,m

] Np∑
i=0

Np∑
j=0

ck
ijm[(vk,i · ∇)vk,j ], (A 4)

m = 0, 1, . . . , Np . The same procedure can be applied for the boundary conditions to
complete the above PDE system.

To this end we obtain a complete deterministic PDE system in each random
element ek . The structures of these PDE systems are the same except for some
constant parameters, e.g. ck

ijm. Thus, a unique procedure can be developed for the
temporal discretization of equations (A 3), which can be found in Wan (2006).

Appendix B. The postprocessing stage
We integrate equations (A 3) and obtain the local polynomial expansions (A 2).

We subsequently use the temperature field T (x, t; ω) as an example to present the
formulae for the commonly used statistics: mean M(T ), variance V (T ), skewness S(T )
and kurtosis K(T ).
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For any fixed x and t , we know the local mean is Tk,0 due to the orthogonality of the
local polynomial basis {Φk,i}. Using the formula (2.5), we obtain the global mean:

M(T ) ≈
N∑

k=1

Pr(ξ ∈ ek)Tk,0. (B 1)

The global variance can be expressed as

V (T ) = �[T 2] − M2(T ) ≈
N∑

k=1

Pr(ξ ∈ ek)

Np∑
i=0

T 2
k,i�k

[
Φ2

k,i

]
− M2(T ). (B 2)

Using the global mean and variance, we can obtain the global skewness and kurtosis,
respectively,

S(T ) = V −3/2(T )�[(T − M(T ))3]

= V −3/2(T )[�[T 3] − 3M(T )V (T ) − M3(T )]

= V −3/2(T )

N∑
k=1

Pr(ξ ∈ ek)

Np∑
i=0

Np∑
j=0

Np∑
m=0

Tk,iTk,jTk,m�k[Φk,iΦk,jΦk,m]

− V −3/2(T )(3M(T )V (T ) + M3(T )), (B 3)

K(T ) = V −2(T )�[(T − M(T ))4]

= V −2(T )[�[T 4] − 4M(T )�[T 3] + 6M2(T )V (T ) + 3M4(T )]

= V −2(T )

N∑
k=1

Pr(ξ ∈ ek)

Np∑
i=0

Np∑
j=0

Np∑
m=0

Np∑
n=0

Tk,iTk,jTk,mTk,n�k[Φk,iΦk,jΦk,mΦk,n]

− 4V −2(T )M(T )

Np∑
i=0

Np∑
j=0

Np∑
m=0

Tk,iTk,jTk,m�k[Φk,iΦk,jΦk,m]

+ V −2(T )[6M2(T )V (T ) + 3M4(T )]. (B 4)
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