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Gappy data: To Krig or not to Krig?
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Abstract

Data recovery and reconstruction methods for unsteady flow fields with spatio-temporal missing data are studied
based on proper orthogonal decomposition (POD) and on Kriging interpolation. It is found that for sufficient temporal
resolution, POD-based methods outperform Kriging interpolation. However, for insufficient temporal resolution, large
spatial gappiness or for flow fields with black zones, Kriging interpolation is more effective. The comparison is per-
formed based on randomly generated laminar and turbulent flow fields obtained from simulations of uniform flow past
a circular cylinder.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Data assimilation is routinely used in atmospheric and ocean modeling, however, this is not the case with
more classical fluid mechanics problems in laboratory or open field applications. The recent rapid develop-
ments in quantitative imaging techniques, e.g., particle image velocimetry (PIV) and magnetic resonance
imaging (MRI), and the simultaneous advances in large-scale simulation offer the possibility for integrating
seamlessly flow simulations and experiments. A key element in this integration is the reconstruction of flow
fields from a finite number of PIV or MRI images and the evaluation of error in such reconstruction. Even
for relatively simple laboratory experiments such as the classical flow past a cylinder, information may be
missing due to ‘‘shadowing’’ (i.e., obstructed view) and proximity to the cylinder walls or the frequency of
the measurements may be below a certain threshold, e.g. in MRI measurements. Therefore, we have to
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work with gappy data where the spatio-temporal regions of missing data are known in advance or where
missing data occur at random.

The gappy data problem is not new as researchers have been working on it for many decades and many
different statistical approaches are used in practice [1,2]. Local Kriging is an effective statistical method
which has been used with success in geology and other fields to interpolate randomly scattered data. Unlike
other estimation procedures, Kriging provides a measure of the error and associated confidence in the esti-
mates [3]. It is also appropriate for the so-called ‘‘black zones’’, i.e., regions of the domain that may miss
data at all times. A non-statistical method for spatio-temporal gappiness, based on proper orthogonal
decomposition (POD), was first proposed in [4]; it was extended and tested in flow problems in [5,6].
Independently, another version of the method was presented in [7] for oceanographic data using again
the method of empirical orthogonal functions (EOF) – a method conceptually identical to POD. In partic-
ular, the versions presented in [6,7] make this non-statistical approach more robust compared to its original
formulation in [4] as the extended method does not depend on the initial guess of the flow field in the gappy
regions.

In the current work we present a comparative study between the aforementioned two POD-based recon-
struction procedures against the Kriging reconstruction procedure. Of particular interest is the maximum

possible resolution that can be obtained given a certain gappiness level. This, in general, is a complex ques-
tion and the answer depends critically on the type of spatio-temporal gappiness in the flow field, the
smoothness of the data, and the Reynolds number. To this end, we have selected the flow past a cylinder
as a test problem due to the previous experience with this flow that shows that a low-dimensional represen-
tation indeed exists, see [6,8–11], and thus redundancy in the available gappy data can be exploited for an
accurate reconstruction. Here we consider both two- and three-dimensional gappy flow fields in the laminar
and turbulent regimes and vary appropriately the available number of flow snapshots.

The paper is organized as follows. In Section 2, we present an overview of two versions of the POD
based reconstruction that we will employ as well as of the Kriging interpolation. We then describe in Sec-
tion 3 the procedure we follow in producing gappy data sets based on direct numerical simulations (DNS).
In Section 4, we present the results, separately for two-dimensional laminar flows and for three-dimensional
laminar and turbulent flows. We conclude in Section 5 with a brief summary.
2. Methodology

We present first two versions of the POD-based reconstruction approach and subsequently a brief over-
view of the Kriging interpolation.

2.1. POD-based reconstruction

The problem of reconstructing a gappy field using POD orthogonal modes was first considered by
Everson and Sirovich [4] for an image reconstruction static problem. The gappy field can be written in
the following way:
ugðx; tÞ ¼ ðuðx; tÞm1ðx; tÞ; vðx; tÞm2ðx; tÞ;wðx; tÞm3ðx; tÞÞ; ð1Þ

where mj(x, t) tracks the spatio-temporal missing data. It is defined by
mjðx; tÞ ¼
1 if the jth component of the field is known in ðx; tÞ;
0 if the jth component of the field is missing in ðx; tÞ.

�
ð2Þ
The procedure proposed by Everson and Sirovich completes the missing spatio-temporal dynamics starting
from a certain initial guess for the unknowns and proceeds iteratively. At the heart of the method is the
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minimization of a functional defined in the spatio-temporal domain where the field is known. Let us denote
by euðx; tÞ a completed field based on some initial guess; the standard Everson–Sirovich method employs the
time average value at that location as initial guess. Subsequently, we perform POD of euðx; tÞ to obtain the
guessed spatial and temporal modes. This decomposition has the form
euðx; tÞ ¼XN
k¼1

eUkðx; tÞefkðtÞ; ð3Þ
where efkðtÞ is the kth guessed temporal mode and eUkðxÞ is the kth guessed spatial mode. The proper func-
tional for minimization is
F g½enk� ¼ euðx; tÞ �XM
k¼1

eUkðxÞenkðtÞ
�����

�����
2

Gappy

¼ euðx; tÞ �XM
k¼1

eUkðxÞenkðtÞ; euðx; tÞ �XM
k¼1

eUkðxÞenkðtÞ
 !

Gappy

; ð4Þ
where the ‘‘Gappy’’ norm is defined on the support of euðx; tÞ, i.e., the spatio-temporal domain on which the
values of euðx; tÞ are known for sure. Also, M is the number of modes that we use in the reconstruction pro-
cess, which is different than the number of available snapshots N (M 6 N). Minimization of this functional
(4) leads to the linear system of algebraic equations
XM

j¼1

ð eUiðxÞ; eUjðxÞÞXgðtÞ
enjðtÞ ¼ ðeuðx; tÞ; eUiðxÞÞXgðtÞ; i ¼ 1; . . . ;M . ð5Þ
The unknowns are the new (non-normalized) temporal modes fenkðtÞg; also, Xg(t) is the gappy spatial
domain at time t. Note that the M · M matrix
½eK�ij ¼ ð eUiðxÞ; eUjðxÞÞXgðtÞ ð6Þ
has time-dependent coefficients.
We now summarize the above algorithm, which is the first version of the POD approach that we present:

2.1.1. Algorithm POD-1

(1) Use time-average values as initial guesses at the locations mj(x, t) = 0 to obtain N snapshots of an
initial complete field euðx; tÞ.

(2) Perform POD of euðx; tÞ to obtain N guessed spatial modes f eUiðxÞg.
(3) Select the number of modes M to be employed in the reconstruction.
(4) Construct the matrix ½eK�ij ¼ ð eUiðxÞ; eUjðx; tÞÞXgðtÞ and the vector ½ef �i ¼ ðeuðx; tÞ; eUiðx; tÞÞXgðtÞ.

(5) Solve the M · M linear system: eKen ¼ ef for the unknowns fenkðtÞg.
(6) Construct a new vector field as follows:
ewðx; tÞ ¼XM
k¼1

eUkðxÞenkðtÞ ð7Þ
and overwrite the previous guess, i.e., set
euðx; tÞ ¼ ewðx; tÞ; only if mjðx; tÞ ¼ 0.
(7) Upon convergence stop, otherwise go to (2).
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A computationally expensive element in the above algorithm is the solution of the least-squares system in

each iteration in steps 4 and 5. An alternative approach is to bypass these steps and approximate enk � efk.
For clarity, we present the entire modified procedure below:
2.1.2. Algorithm POD-2

(1) Use time-average values as initial guesses at the locations mj(x, t) = 0 to obtain N snapshots of an ini-
tial complete field euðx; tÞ.

(2) Perform POD of euðx; tÞ to obtain N guessed spatial modes f eUiðxÞg and the corresponding temporal
modes efkðtÞ.

(3) Select the number of modes M to be employed in the reconstruction.
(4) Construct a new vector field as follows:
ewðx; tÞ ¼XM
k¼1

eUkðx; tÞefkðtÞ ð8Þ
and overwrite the previous guess, i.e., set
euðx; tÞ ¼ ewðx; tÞ only if mjðx; tÞ ¼ 0.
(5) Upon convergence stop, otherwise go to (2).

This approach has been used in [7] for oceanographic data using the singular value decomposition
formulation.

POD-1 breaks down when the matrix eK is singular. This includes, for example, the case in which a
snapshot is missing (i.e., Xg(t*) = 0). Also, both algorithms (POD-1 and POD-2) break down if there
are any spatial subregions for which the data are missing at all the times. In general, the optimum
number of modes Mo in the reconstruction depends on the initial guess. Specifically, by optimum num-

ber of modes we mean the number Mo for which the error is the smallest among all possible con-
verged reconstructions. A more robust version was presented in [6] that does not depend on the
initial guess and, in addition, enhances accuracy significantly. The main steps of this iterative proce-
dure are:
2.1.3. Iterative procedure

(1) Perform POD-1 but employ only M = 2 modes in the reconstruction.
(2) Use the converged result from the previous step as a new initial guess and apply POD-1 but now

employ M = 3 modes in the reconstruction.
(3) Proceed similarly for the nth iteration until the obtained eigenspectrum does not change anymore.

Although more costly, results presented in [6] suggest that the iterative POD-1 procedure leads to the
maximum possible resolution of the true eigenspectrum and thus of possible accuracy in reconstructing
the flow field. More importantly, the final solution will only depend on the degree of gappiness and not
on the initial guesses in the gappy subregions. A similar iterative procedure for POD-2 can be used by start-
ing from M = 1.

We have found that the same iterative procedure is effective when we apply POD-2, see [12]. In the pres-
ent paper, we will employ the iterative extensions of algorithms POD-1 and POD-2.
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2.2. Kriging interpolation

We adopt the Kriging interpolation method based on the correlogram rather than the usual variogram
(see [13] for more information), implemented in the Matlab toolbox DACE, [14]. A brief overview is as
follows:

Let S be the sampling grid containing known m points, i.e., S = [s1. . .sm] with si 2 Rn. A known value of
a function at those locations is denoted as yi 2 Rp, where we assume that we have p functions at the point, i,
e.g., p = 3 for a three-dimensional velocity vector field. Let Y be the matrix containing all those responses,
i.e., Y = [y1. . .ym], yi 2 Rp.

Let us assume for simplicity that p = 1. Then, for the set S of our sampling grid, we define the m · l inter-
polation matrix F 2 Rm�l as
Fij ¼ fjðsiÞ;

where fj : R

n ! R are polynomial functions. We also define the correlation matrix R 2 Rm�m by Rij = R(h,
si, sj) where h is the correlation parameter that defines implicitly the correlation length. Then, the Kriging
interpolation at an unknown point x is
ŷ ¼ fðxÞl� þ rðxÞc�; ð9Þ

where fðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fðnþ1Þðnþ2Þ

2

ðxÞ� are the functions in the regression model, and
l� ¼ ðFTR�1FÞ�1
FTR�1Y;

rðxÞ ¼ ½Rðh; s1; xÞ . . .Rðh; sm; xÞ�T;
with
c� ¼ R�1ðY� Fl�Þ.

From this last formula we see that for each unknown point x, we just need to compute the interpolation
vector f(x) and the correlation vector r(x). We first specify the correlation matrix R(h, si, sj) and provide
a range for h within which an optimization procedure is performed based on the variance estimate. This
will give the optimum value h* and based on that value then R(h*, si, sj), l* and c* will also be known.

For multiple functions (p > 1), Eq. (9) is valid for each column of Y, i.e., Eq. (9) holds with l� 2 Rl�p and
c� 2 Rm�p.

The regression model used in all of our studies is based on second-order polynomials. Specifically, let xj
be the jth component of x 2 Rn, then:
f1ðxÞ ¼ 1; f 2ðxÞ ¼ x1; . . . ; fnþ1ðxÞ ¼ xn; f nþ2 ¼ x21; . . . ; f2nþ1 ¼ x1xn;

f 2nþ2 ¼ x22; . . . ; f3n ¼ x2xn � � � flðxÞ ¼ x2n;
where l ¼ ðnþ1Þðnþ2Þ
2

.
Also, for the correlation kernel R, we employ a Gaussian correlation model since the flow field is contin-

uously differentiable. More precisely, R has the form:
Rðh;w; xÞ ¼
Yn
j¼1

Rjðh;wj � xjÞ;
where
Rjðh;wj � xjÞ ¼ expð�hjðwj � xjÞ2Þ.

In the last subsection of Section 4 we will also use the exponential correlation model for comparison,
defined by
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Rjðh;wj � xjÞ ¼ expð�hjjwj � xjjÞ.

For more information regarding the computational aspects of the Kriging procedure, see [15].

In order to apply the Kriging procedure to our gappy data we need to distinguish two cases. First, we
consider the case that we have no black zones at all. In this case, we apply the Kriging procedure element-
by-element, where element here refers to the spectral element of the computational mesh. Second, we con-
sider gappy data with black zones. In this case, we embed the black zone in a larger region, roughly twice
the size of the black zone, so that is surrounded with data points of known values. We then apply Kriging
on the larger region.
3. Data gathering

We first consider two-dimensional flow past a circular cylinder at Reynolds number Re = 100 and
Re = 500. The computational domain is shown in Fig. 1. Uniform flow is imposed at the inflow boundary
C1 and also on C3 and C4 while on C2 the zero Neumann condition on velocity is imposed and the pressure
is set to zero. On the cylinder surface C5 the no-slip boundary condition is prescribed. Converged solutions
were obtained using the spectral/hp element method [16]. The domain is discretized into 412 triangular ele-
ments while 7th-order Jacobi polynomial basis are used to obtain resolution independent solutions. Forty
(N = 40) and fifty (N = 50) snapshots of solutions are obtained from the DNS for Re = 100 and Re = 500,
respectively, corresponding to one full vortex-shedding period Ts. (For Re = 100 we obtained Ts = 5.99
while for Re = 500 we obtained Ts = 4.54 in convective time units.) Points in the domain are then randomly
dropped from the data set to produce gaps in the data with 10%, 25% and 50% missing data in each
snapshot.

Subsequently, we consider three-dimensional flow past a circular cylinder at Reynolds number, Re = 185
and 10,000. The former corresponds to a periodic limit cycle (laminar flow with vortex shedding period
Ts = 5.5 in convective time units) whereas the latter to a turbulent wake so we deal with ‘‘rough’’ data.
A discretization similar to the two-dimensional cases is used here but with Fourier expansions employed
along the spanwise location. In an effort to assess the spanwise convergence and its possible effect on the
gappy data reconstruction procedures, we performed systematic refinement studies along the spanwise
direction with Z = 4,8 and Z = 16 Fourier collocation points along the span. In these simulations, the
length of the cylinder span was kept constant at LZ

D ¼ 4, where D is the diameter of the cylinder, and the
Γ3

Γ1

Γ4

Γ2

Γ5

8.5D

8.5D

14.5D 24.5D

Fig. 1. Computational domain for flow past a circular cylinder.
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Reynolds number was kept constant at Re = 185 (based on the cylinder diameter). We refer to [17] for more
information for the Re = 185 case and to [18] for the Re = 10,000; in the latter case a much higher resolu-
tion (about 15 million grid points) and systematic refinement studies were performed.

In order to generate the gappy flow field, we discard randomly the values of the solution on some nodes
in every snapshot. In order to quantify the gappiness in a flow field, we define the ‘‘gappiness percentage’’ as
the number of nodal data points that are missing with respect to the total number of nodal data. Given a
gappiness percentage, due to the distribution of the spectral elements, we actually discard much more data
near the cylinder. Specifically, we consider flows fields with 25%, 50% and 75% gappy data. Due to random
discarding process, these gappiness percentages vary slightly for each snapshot but are very close to the
assigned values.

The gappy data set we employed were obtained from a fully three-dimensional spatio-temporal random
distribution. In addition, in order to assess the effect of the spatial gappiness distribution, we have also con-
sidered ‘‘quasi three-dimensional’’ gappiness, that is, we keep the same gappiness distribution for all planes
in the spanwise direction. Numerical results revealed that the quasi three-dimensional gappiness did not
affect the reconstruction procedure in any significant way. Here we will not report such results separately.
4. Results

4.1. Two-dimensional gappy fields

We will first present a comparison of results between the two versions of the POD-based reconstruction
procedure (POD-1 and POD-2) for smooth and noisy gappy flow fields, and subsequently we will present
results based on the Kriging interpolation. We separate these comparisons into two main categories corre-
sponding to availability of data with high temporal resolution and with low temporal resolution. As we will
demonstrate, temporal resolution is crucial in deciding which method is more effective in recovering com-
plete fields.

4.1.1. Convergence
Given the similarity of the two versions of POD reconstruction we first compare their corresponding

convergence rates for smooth and noisy data. For the cases we study here, since we know completely
the original velocity field, we monitor the time-averaged relative error. In general, when we do not know
the real field, we can adopt a cross-validation approach by taking out 1–3% of known data and treating
them like missing data. In Fig. 2 we plot the time-averaged error defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

1

N

R
Xðui � ûiÞ2 dXR

Xu
2
i dX

vuut

versus the number of modes M employed in the reconstruction. This error decreases monotonically if the
iterative procedure is applied, see Fig. 2 (right); however, without the iterative procedure presented in Sec-
tion 2 the error decreases initially but then diverges as the number of modes M employed in the reconstruc-
tion exceeds a certain value, see Fig. 2 (left). From the comparison of the results in Fig. 2, we see that the
convergence of the POD-1 method is very close to the convergence of POD-2, however the latter is a much
more efficient method. The results in the plot are for Re = 500 but similar results hold for Re = 100 not
shown here. We note, however, that the non-monotonic decrease of the error is problem-dependent; for
example, for some noisy data sets both POD-1 and POD-2 diverge above a certain number of modes em-
ployed in the reconstruction. This is demonstrated in Fig. 3, where we have superimposed Gaussian noise to
the previous gappy data in the form:
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Fig. 2. Time-averaged error versus number of reconstruction modes of POD method for Re = 500 with 50% gappiness and no
iterations (left) and that of POD-1 and POD-2 methods for Re = 500 with 50% gappiness (right).
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Fig. 3. Time-averaged error versus number of reconstruction modes of POD-1 and POD-2 methods for Re = 500 with 90% gappiness
in the noisy data with a = 0.15.
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Y 7!Yþ a randnð0; 1Þ;

where here we used a = 0.15 . We also note that in the presence of noise, POD-1, which involves solution of
a least-square system, is more accurate than POD-2.

4.1.2. High temporal resolution

Let us assume that we have available many snapshots of the flow field, e.g., N = 50 for Re = 500. We will
compare the two POD versions against the results obtained with Kriging interpolation. In particular, since
the domain is decomposed into non-uniform triangular elements with variable grid-spacing, we map each
triangular element onto square elements with equal grid-spacing and then we apply the Kriging
interpolation.
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We first compare the energy distribution corresponding to the different reconstructed fields, i.e., the nor-
malized eigenvalues of the ‘‘reconstructed’’ POD modes. A typical result is shown in Fig. 4 for Re = 500
and 50% gappiness percentage. We see that the eigenspectra of POD-1 and POD-2 are in good agreement
with the eigenspectrum of the complete original field up to mode M0 = 15 whereas the Kriging interpola-
tion produces an eigenspectrum accurate up to M0 = 10. We have also included in the plot an additional
result (denoted as ‘‘POD’’ in the legend) corresponding to POD-2 but without any iterations. It shows poor
agreement with the complete data eigenspectrum, thus indicating the importance of applying the POD pro-
cedures iteratively up to full convergence.

Eigenspectra alone cannot give a complete picture of the accuracy of the reconstruction, so we examine
next the spatial POD modes obtained from the reconstructed fields. It was demonstrated in [6] that achiev-
ing an accurate (temporal) eigenspectrum does not necessarily imply accurate reconstruction of the spatial
modes, especially for large gappiness. For the most energetic modes, there is good agreement between all
three reconstruction approaches (POD-1, POD-2, Kriging) with the original complete data, as shown in
Fig. 5 for the fifth mode. Here we do not show separately the POD-2 results as they have no visible differ-
ences with the POD-1 results. Note that the Kriging results are somewhat noisy compared to the original
data unlike the POD results. Next, we plot results for a typical high mode (mode 18th) in Fig. 6. Unlike the
low modes, here Kriging interpolation gives erroneous results, as the actual POD mode has opposite sym-
metries compared to what is obtained with Kriging interpolation. However, the POD-based algorithms
produce correct results compared to the POD modes obtained from the whole DNS field.

4.1.3. Low temporal resolution
Temporal resolution affects greatly the accuracy of the POD based reconstruction procedures. We study

here the case in which we assume that we do not have sufficient temporal resolution. This case is studied for
the same gappy data sets but now we drop some of the snapshots so that there are only N = 10 or N = 20
equally spaced snapshots per vortex shedding period for Re = 100 and N = 10 or N = 25 snapshots per
vortex shedding period for Re = 500. Here we present results for the higher Reynolds number in Fig. 7.
Unlike the high temporal resolution case, both POD-1 and POD-2 perform poorly compared to the Kriging
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Fig. 5. High temporal resolution: comparison of the 5th POD mode at Re = 500 with 50% gappiness. From top to bottom: POD-1,
Kriging interpolation and DNS field. Left: streamwise velocity. Right: crossflow velocity.
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interpolation. We note that in the case of Re = 500 with 10 snapshots, the eigenspectrum of the two POD
versions matches the actual spectrum only up to M0 = 3 modes whereas that obtained using the Kriging
method is accurate up to M0 = 7 modes. We have also included in the plot the eigenspectra of the complete
fields corresponding to the entire set of snapshots in order to indicate that there is almost a total overlap of
the corresponding eigenspectra. Finally, in Fig. 8 we plot contours of the fifth spatial mode confirming that
indeed Kriging is more effective for flow data corresponding to low temporal resolution. We do not present
any higher modes here as they are very noisy.

4.1.4. Kriging for black zones

The POD-based reconstruction procedures cannot recover any data for the black zones, i.e., regions in
the domain for which we have missing data at all times. However, Kriging interpolation can fill in these
black zones, so here we evaluate its effectiveness. To this end, we will employ again the two-dimensional
simulation data in flow past a cylinder. Results with available experimental data based on particle-
image-velocimetry (PIV) were obtained in [12] for a more complex flow and similar conclusions as the ones
presented next were drawn.

First, we consider uniform flow past a circular cylinder, as above, and we remove from the domain some
regions. The first removed region is a square area of width D. It is located at 1.5D downstream from the
cylinder. The second removed region is a square area with 2D width located at 10.5D downstream of



Fig. 6. High temporal resolution: comparison of the 18th POD mode at Re = 500 with 50% gappiness. From top to bottom: POD-1,
Kriging interpolation and DNS field. Left: streamwise velocity. Right: crossflow velocity.
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the cylinder. We have removed the same area for all 40 snapshots and 50 snapshots for Re = 100 and
Re = 500. The Kriging interpolation now is performed separately on two bigger square domains containing
the aforementioned black zones with width of 2D and 4D.

The results at Re = 500 lead to same conclusion as the results from Re = 100, so here we present results
from Re = 100. We plot the streamlines of the first snapshot of the data from Re = 100 in Fig. 9. Shown
here is the case where the black zone is at 1.5D downstream (the dashed box represents the black zone.) We
see that the results obtained from the Kriging interpolation seem to be in reasonable agreement with the
real field. We can quantify the error by plotting in Fig. 11 (left) the streamwise velocity profile at x = 2,
which is a location right through the middle of the black zone; the error is noticeable but small.

Next, we examine the case for which the black zone is at 10.5D downstream from the cylinder,
see Fig. 10. The results from this figure in conjunction with the velocity profile plotted in Fig. 11 (right)
demonstrate that the prediction of the Kriging interpolation is more accurate in this case. This should
be expected as the first black zone is in the region of absolute instability, which effectively defines the
von Karman street behind the cylinder, see [19].

4.2. Three-dimensional gappy fields

In the first subsection we continue the comparison between POD-based reconstruction and Kriging
interpolation for three-dimensional flow. In the second subsection we investigate how the accuracy of
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Kriging interpolation is affected by the correlation kernel we select; we do this for the turbulent wake. Due
to excessive memory requirements in the POD-based reconstruction we could not process the data with our
serial reconstruction code for the turbulent field, so a comparison in this case was not possible. Kriging, on
the other hand, works on one field at at time.



Fig. 8. Low temporal resolution: comparison of the fifth POD mode of Re = 500 with 10 snapshots for 50% gappiness. From top to
bottom: POD-1, Kriging interpolation, DNS field. Left: streamwise velocity. Right: crossflow velocity.

370 H. Gunes et al. / Journal of Computational Physics 212 (2006) 358–382
4.2.1. Periodic limit cycle

At Reynolds number Re = 185 the flow past a cylinder bifurcates to a stable three-dimensional time-
periodic state [20]. We want to investigate the performance of the aforementioned reconstruction
techniques for gappy data sets of this three-dimensional flow. We have shown in the previous section that
at least for the cylinder flow the two POD-based reconstruction procedures perform similarly, so here we
present comparisons of POD-1 against Kriging interpolation.

In order to investigate the accuracy of each reconstruction procedure in detail we employ the standard
root-mean-square error (rms) for each snapshot as follows:
rmsMðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

½uMc ðx; y; zÞ � uðx; y; zÞ�2
vuut ; ð10Þ
where NT is the total number of grid points in the flow field, uMc denotes the reconstructed streamwise veloc-
ity component via M modes, while u(x,y,z) denotes the ‘‘true’’ velocity component obtained from the DNS
before the random data-discarding process. The rms error for the crossflow and spanwise velocity compo-
nents are defined similarly.

Fig. 12 shows the root-mean-square error of the reconstructed velocity components as a function
of mode number employed in the POD-1 method and the Kriging method. The gappy field considered
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corresponds to 25% gappiness percentage. The POD-1 method exhibits monotonic convergence as the num-
ber of modes is increased. The Kriging procedure is independent of the number of snapshots since it is em-
ployed for each snapshot individually. We have also included (with symbols) the original (non-iterative)
POD-1 procedure of Everson and Sirovich, which converges initially but diverges above a certain number
of modes. This is a typical behavior we have observed for the two-dimensional flow as well, see also [6]. We
also observe here that the relative performance of POD-1 against Kriging depends strongly on the temporal
resolution, i.e., the number of available snapshots. Specifically, by increasing the number of snapshots from
N = 40 to N = 80, the error for POD-1 drops more than one order of magnitude. We also note that while
there is almost no difference in the (overlapping) POD spectrum of full (non-gappy) flow field between 40
and 80 snapshots, it is crucial to employ a sufficient number of snapshots for an accurate reconstruction of
the gappy data.

We now examine how the performance of the two reconstruction methods changes as the gappiness in-
creases. Fig. 13 shows the root-mean-square error of the reconstructed velocity components as a function of
mode number for 50% and 75% gappiness. Comparing these results with the results of Fig. 12 suggests that
for increased gappiness levels (up to 75%, possibly more), Kriging outperforms the POD-based approach.
The convergence of POD-1 as a function of the number of modes employed in the reconstruction is rather
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complex: While for the low gappiness percentage (Fig. 12), all modes, including higher modes, contribute to
reducing the error, for larger gappiness (50% and 75%), higher order modes do not actually contribute to
reducing the error. This can be attributed to the unresolved higher (spatial) modes due to the insufficient
number of snapshots for larger gappiness percentage. Since each snapshot provides some extra information
of the dynamics of the flow, by increasing the number of snapshots beyond N = 80 for 75% gappiness, it
may be possible to further improve the accuracy of the POD-1 method.

Fig. 14 shows a comparison of eigenspectra obtained using the POD-1 method and the Kriging proce-
dure. Note that the eigenspectrum obtained by the Kriging procedure does not depend on the number of
modes while for the POD-1 method the eigenspectrum (like the rms error) is a function of the number of
modes, and can be improved significantly by increasing the number of modes for reconstruction. Fig. 14
shows that for all three gappiness percentages considered, more temporal modes are resolved using the
POD-1 procedure. Specifically, there are apparent large deviations for the Kriging method for higher modes
as seen in Fig. 14. In other words, it appears that the POD-1 procedure follows the ‘‘true’’ spectrum more
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closely. However, this is true for the low gappiness percentage only. Upon closer inspection of the results
for the 75% gappiness, we see in Fig. 15 that there are considerable deviations in the most energetic

temporal modes obtained using the POD-1 method whereas Kriging follows the most important part of
the ‘‘true’’ spectrum, i.e., the low more energetic modes, more accurately.

Table 1 shows the relative error of the first three temporal modes for different gappiness percentages. At
75% gappiness percentage, the Kriging method captures the first three temporal modes better than the
POD-1 procedure by about an order of magnitude whereas for lower gappiness the POD-1 method is more
accurate. Overall, the errors in eigenspectra are consistent with the rms errors we presented in earlier plots.

We now turn our attention to the quality of the reconstructed velocity fields. For the smallest gappiness
we considered, i.e., 25%, all POD modes up to the 21st mode are resolved accurately by both methods. For
higher order modes, e.g., the 31st mode, there is a large difference between the two methods with POD-1
much more accurate than Kriging. Despite the inaccuracy in the higher modes, the reconstructed flow fields
are visually identical.

We now examine the reconstructed fields at gappiness 50% for which the POD-1 eigenspectrum is
slightly more accurate than that of Kriging interpolation. Contours of all three velocity components are
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plotted in Fig. 16 at a fixed z-plane perpendicular to the cylinder axis. In addition to the reconstructed
fields, we also present the 50% gappy data and the (non-gappy) DNS data, for comparison. The left column
represents the streamwise component, the middle column represents the crossflow component and the right
column represents the spanwise component of the flow. The POD-based approach results in a slightly better
reconstruction than the Kriging procedure. For example, the spanwise velocity component error of the



Table 1
Relative error of the first three temporal modes (eigenvalues) compared to the ‘‘true’’ eigenvalues

M 25% 50% 75%

POD-1 procedure Kriging POD-1 procedure Kriging POD-1 procedure Kriging

1 0 1.0 · 10�5 2.2 · 10�4 2.7 · 10�4 3.69 · 10�2 3.74 · 10�3

2 0 0.0 0 2.5 · 10�2 2.3 0.4
3 0 1.0 · 10�5 1.4 · 10�2 3.7 · 10�2 4 0.4

*
*

*

*

Mode
4 5 6 7

.00012

.00016

0.0002
*

POD-1 (M=40)

True spectrum
Kriging

Fig. 15. Close-up of eigenspectra (shown in Fig. 14) for the case of 75% gappiness.
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Kriging procedure is twice as big as the POD-1 procedure (0.003054 versus 0.001553) and this leads to vis-
ibly ‘‘noisy’’ contours of spanwise velocity component depicted in Fig. 16 obtained using the Kriging pro-
cedure. Figs. 17 and 18 show spanwise variation of the reconstructed crossflow and spanwise velocity fields,
respectively. In general, both methods perform very well in capturing spanwise distributions, even though
some slight deviations from the ‘‘true’’ field are noticeable for the Kriging procedure under closer exami-
nation, consistent with the respective error values.

Finally, we present the reconstructed fields for very large gappiness, namely 75%. Unlike the 25% and
50% gappy data we presented previously, for the 75% gappy data set, none of the modes obtained by
the POD-1 are resolved accurately; they all contain noise, which increases drastically with increasing mode
number. On the other hand, the lower most energetic modes (e.g., up to 10th mode) extracted by Kriging
are resolved accurately. The effect of unresolved modes (both temporal and spatial) is evident on the recon-
structed flow field by the POD-1, as shown in Fig. 19, where the crossflow velocity component is plotted.

4.3. Kriging: choice of correlation function

We have demonstrated so far that the Kriging procedure is quite effective for laminar flows for which the
velocity fields are very smooth. In this section, we consider turbulent flow fields obtained in simulations
described in [18] for flow past a cylinder at Reynolds number Re = 10,000. A mesh consisting of 9272 tri-
angular elements was employed with Jacobi polynomial basis of of fifth order, while 64 Fourier planes were
employed along the span. The Kriging procedure is applied in each element in order to recover the missing
data. Here, we compare two types of kernels corresponding to different smoothness at the origin:



Fig. 16. Reconstruction of 50% gappy data via the POD-1 and Kriging methods. From top to bottom, gappy data field, POD-1,
Kriging, and original DNS data. The instantaneous ninth snapshot at z = 1 plane is shown. Left: streamwise; middle: crossflow, and
right: spanwise components.
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(1) the Gaussian kernel, which is the kernel we have used in all cases so far at lower Reynolds number,
and

(2) the exponential kernel which is non-smooth at the origin.

A summary of our findings is presented in Table 2. Reconstruction of the streamwise velocity exhibits
the largest errors. For low gappiness (25%), the Gaussian kernel is clearly more effective than the exponen-
tial kernel. However, for the higher gappiness cases, the two kernels are equally effective as the errors in the
reconstruction are about the same.

Remark. It would be interesting to evaluate how POD-based reconstruction compares with the Kriging
reconstruction in the case of turbulent fields. However, we could not perform the POD-based procedures
for the turbulent fields due to computer memory limitations. Specifically, each snapshot requires 360
Mbytes and we have a total of 80 snapshots to analyze, requiring 28.8 Gbytes and additional space for
work arrays. The DNS runs were done on the Pittsburgh Supercomputing Center (PSC) supercomputer on
more than 1000 processors; however our POD code is a serial code and cannot handle such a big memory
request. We tried to come up with other techniques to overcome this memory problem but we did not find
an effective solution.
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5. Summary

We have presented three different algorithms in reconstructing gappy velocity fields for unsteady flows.
The first two algorithms are based on proper orthogonal decomposition (POD) and require the entire set of
snapshots. They are different in the way the unknown temporal modes are computed: Algorithm POD-1
involves the solution of a least-squares system whereas algorithm POD-2 is less rigorous. The third method
is based on Kriging interpolation, it is local, and it is applied to each snapshot separately. In the current
study we have created artificially gappy data sets obtained from direct numerical simulations of flow past
a circular cylinder in two- and three-dimensions. We have also worked with experimental data obtained
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using particle image velocimetry (PIV) and similar results, as in the current study, were obtained, see [12].
We summarize here the main findings from our study:

� Kriging interpolation is an effective way of recovering missing data in unsteady flows even in sensitive
regions, e.g., regions of absolute instability.

� For high temporal resolution (i.e., many snapshots), POD-based reconstruction is more accurate than
Kriging interpolation; however, for low temporal resolution Kriging is more effective.

� For small gappiness in the flow field, POD-based reconstruction is more accurate than Kriging; however,
for large gappiness Kriging is more accurate.
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� The two versions of POD-based reconstruction exhibit the same accuracy for modest levels of gappiness,
but POD-2 is much more efficient than POD-1. However, for large gappiness and noisy gappy data
POD-1 is more accurate.

� In Kriging interpolation, the Gaussian correlation kernel is more effective than the exponential kernel
but for large gappiness similar results are obtained.

The flow we have examined exhibits low-dimensionality and therefore the reconstruction methods are
effective even for large gappiness, e.g., 75%. We have also worked with relatively smooth data, whereas,
in general, noise may be present in the gappy data sets. In future work, it will be of interest to apply the



Table 2
Error (rms) in velocity components using two different Kriging kernels for a turbulent field

Kernels Rms(u)

25% 50% 75%

Gaussian type 0.00688 0.01655 0.03043
Exponential type 0.00924 0.01799 0.03120

Rms(v)

25% 50% 75%

Gaussian type 0.00672 0.01614 0.02964
Exponential type 0.00905 0.01756 0.03042

Rms(w)

25% 50% 75%

Gaussian type 0.00566 0.01458 0.02886
Exponential type 0.00801 0.01637 0.02992
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techniques presented here to other flows, e.g. to wall-bounded turbulence, in order to gain more experience
with data recovery techniques for such fluid mechanics problems.
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