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NUMERICAL METHODS FOR SPDES
WITH TEMPERED STABLE PROCESSES∗

MENGDI ZHENG† AND GEORGE EM KARNIADAKIS†

Abstract. We develop new probabilistic and deterministic approaches for moment statistics
of stochastic partial differential equations with pure jump tempered α-stable (TαS) Lévy processes.
With the compound Poisson (CP) approximation or the series representation of the TαS process,
we simulate the moment statistics of stochastic reaction-diffusion equations with additive TαS white
noises by the probability collocation method (PCM) and the Monte Carlo (MC) method. PCM is
shown to be more efficient and accurate than MC in relatively low dimensions. Then as an alternative
approach, we solve the generalized Fokker–Planck equation that describes the evolution of the density
for stochastic overdamped Langevin equations to obtain the density and the moment statistics for
the solution following two different approaches. First, we solve an integral equation for the density by
approximating the TαS processes as CP processes; second, we directly solve the tempered fractional
PDE (TFPDE). We show that the numerical solution of TFPDE achieves higher accuracy than PCM
at a lower cost and we also demonstrate agreement between the histogram from MC and the density
from the TFPDE.
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1. Introduction. We develop and compare different numerical methods to solve
two stochastic models with tempered α-stable (TαS) Lévy white noises: a reaction-
diffusion equation and an overdamped Langevin equation with TαS white noises,
including stochastic simulation methods such as the Monte Carlo (MC) [11, 43] and
probability collocation method (PCM) [3, 55]. We also simulate the density of the
overdamped Langevin equation through its generalized Fokker–Planck (FP) equation
formulated as a tempered fractional PDE (TFPDE).

1.1. Stochastic models driven by tempered stable white noises. We first
solve the following stochastic reaction-diffusion model via stochastic simulation meth-
ods (MC and PCM) in the Itô sense:

(1.1)

⎧⎨
⎩

du(t, x;ω) = (∂
2u

∂x2 + μu)dt+ εdLt(ω), x ∈ [0, 2],
u(t, 0) = u(t, 2), periodic boundary condition,
u(0, x) = u0(x) = sin(π2x), initial condition,

where Lt(ω) is a one-dimensional TαS process (also known as a Carr–Geman–Madan–
Yor (CGMY) process in finance) [9, 10].

The second model is a one-dimensional stochastic overdamped Langevin equation
in the Itô sense [12, 24]:

(1.2) dx(t;ω) = −σx(t;ω)dt+ dLt(ω), x(0) = x0,
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where Lt(ω) is also a one-dimensional TαS process. It describes an overdamped par-
ticle in an external potential driven by additive TαS white noise. This equation was
introduced in [28] to describe the stochastic dynamics in fluctuating environments for
Gaussian white noise, such as classical mechanics [20], biology [22], and finance [11].
When Lt(ω) is a Lévy process, the solution is a Markov process and its probabil-
ity density satisfies a closed equation such as the differential Chapman–Kolmogorov
equation [15] or the generalized FP equation [47]. When Lt(ω) is a TαS Lévy process,
the corresponding generalized FP equation is a TFPDE [12].

1.2. Background on tempered stable processes. TαS processes were in-
troduced in statistical physics to model turbulence, e.g., the truncated Lévy flight
model [27, 33, 39], and in mathematical finance to model stochastic volatility, e.g.,
the CGMY model [9, 10]. Here, we consider a symmetric TαS process (Lt) as a
pure jump Lévy martingale with characteristic triplet (0, ν, 0) [6, 52] (no drift and no
Gaussian part). The Lévy measure is given1 by [11]

(1.3) ν(x) =
ce−λ|x|

|x|α+1
, 0 < α < 2.

This Lévy measure can be interpreted as an Esscher transformation [18] from that
of a stable process with exponential tilting of the Lévy measure. The parameter
c > 0 alters the intensity of jumps of all given sizes; it changes the time scale of the
process. Also, λ > 0 fixes the decay rate of big jumps, while α determines the relative
importance of smaller jumps in the path of the process.2 The probability density
for Lt at a given time is not available in a closed form (except when α = 1

2 ).
3 The

characteristic exponent for Lt is [11]

(1.4) Φ(s) = s−1 logE[eisLs ] = 2Γ(−α)λαc

[(
1− is

λ

)α

− 1 +
isα

λ

]
, α �= 1,

where Γ(x) is the Gamma function and E is the expectation. By taking the derivatives
of the characteristic exponent we obtain the mean and variance:

(1.5) E[Lt] = 0, V ar[Lt] = 2tΓ(2− α)cλα−2.

In order to derive the second moments for the exact solutions of (1.1) and (1.2), we
introduce the Itô isometry. The jump of Lt is defined by �Lt = Lt −Lt− . We define
the Poisson random measure N(t, U) as [23, 37, 40]

(1.6) N(t, U) =
∑

0≤s≤t

I�Ls∈U , U ∈ B(R0), Ū ⊂ R0.

Here R0 = R\{0}, and B(R0) is the σ-algebra generated by the family of all Borel
subsets U ⊂ R, such that Ū ⊂ R0; IA is an indicator function. The Poisson random
measure N(t, U) counts the number of jumps of size �Ls ∈ U at time t. In order
to introduce the Itô isometry, we define the compensated Poisson random measure
Ñ [23] as

(1.7) Ñ(dt, dz) = N(dt, dz)− ν(dz)dt = N(dt, dz)−E[N(dt, dz)].

1In a more generalized form, the Lévy measure is ν(x) =
c−e

−λ−|x|

|x|α+1 Ix<0 +
c+e

−λ+|x|

|x|α+1 Ix>0. We

may have different coefficients c+, c−, λ+, λ− on the positive and the negative jump parts.
2In the case when α = 0, Lt is the gamma process.
3See inverse Gaussian processes.
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The TαS process Lt (as a martingale) can be also written as

(1.8) Lt =

∫ t

0

∫
R0

zÑ(dτ, dz).

For any t, let Ft be the σ-algebra generated by (Lt, Ñ(ds, dz)), z ∈ R0, s ≤ t. We
define the filtration to be F = {Ft, t ≥ 0}. If a stochastic process θt(z), t ≥ 0, z ∈ R0

is Ft-adapted, we have the following Itô isometry [37]:

(1.9) E

⎡
⎣(∫ T

0

∫
R0

θt(z)Ñ(dt, dz)

)2
⎤
⎦ = E

[∫ T

0

∫
R0

θ2t (z)ν(dz)dt

]
.

Equations (1.1) and (1.2) are understood in the Itô sense. The solutions are stochastic

Itô integrals over the TαS processes Lt [46], such as
∫ T

0 f(t)dLt, with the Lévy measure
given in (1.3). Thus, by applying (1.8), the second moment can be derived using the
Lévy measure:

(1.10)

E

⎡
⎣
(∫ T

0

f(t)dLt

)2
⎤
⎦ = E

⎡
⎣
(∫ T

0

∫
R0

f(t)zÑ(dt, dz)

)2
⎤
⎦

= E

[∫ T

0

∫
R0

f2(t)z2ν(dz)dt

]
.

Both equations (1.1) and (1.2) contain an additive white noise L̇t of a TαS process.
Details of white noise theory for Lévy processes with applications to stochastic partial
differential equations (SPDEs) and finance can be found in [5, 38, 30, 31, 41]. The
white noise of a Poisson random measure takes values in a certain distribution space.
It is constructed via a chaos expansion for Lévy processes with kernels of polynomial
type [38], and defined as a chaos expansion in terms of iterated integrals with respect
to the compensated Poisson measure Ñ(dt, dz) [25].

1.3. Numerical simulations of functionals of TαS processes. For simula-
tions of TαS Lévy processes, we do not know the distribution of increments explic-
itly [11], but we may still simulate the trajectories of TαS processes by the random
walk approximation [4]. However, the random walk approximation does not identify
the jump time and size of the large jumps precisely [48, 49, 50, 51]. In the heavy
tailed case, large jumps contribute more than small jumps in functionals of a Lévy
process. Therefore, in this case, we have mainly used two other ways to simulate
the trajectories of a TαS process numerically: compound Poisson (CP) approxima-
tion [11] and series representation [49]. In the CP approximation, we treat the jumps
smaller than a certain size δ by their expectation, and treat the remaining process
with larger jumps as a CP process [11]. There are six different series representations of
Lévy jump processes. They are the inverse Lévy measure method [14, 26], LePage’s
method [29], Bondesson’s method [8], thinning method [49], rejection method [48],
and shot noise method [49, 50]. In this paper, for TαS processes, we will use the shot
noise representation for Lt as a series representation method because the tail of the
Lévy measure of a TαS process does not have an explicit inverse [51]. Both the CP
and the series approximation converge slowly when the jumps of the Lévy process
are highly concentrated around zero, however, both can be improved by replacing the



A1200 MENGDI ZHENG AND GEORGE EM KARNIADAKIS

small jumps with Brownian motions [2]. The α-stable distribution was introduced to
model the empirical distribution of asset prices [32], replacing the normal distribution.
The empirical distribution of asset prices is not always in a stable distribution or a
normal distribution. The tail is heavier than a normal distribution and thinner than
a stable distribution [7]. Therefore, the TαS process was introduced as the CGMY
model to modify the Black and Scholes model.

In the past literature, the simulation of SDEs or functionals of TαS processes was
mainly done via MC [43]. MC simulation for functionals of TαS processes is possible
after a change of measure that transforms TαS processes into stable processes [45].

The paper is organized as follows: in section 2, we compare the CP approximation
and the series representation of a TαS process; in section 3, we solve a stochastic
reaction-diffusion model with TαS white noise via MC and PCM, both with CP
approximation or series representation, of the TαS process; in section 4, we simulate
the density evolution for an overdamped Langevin equation with TαS white noise via
the corresponding generalized FP equations. We also compare the statistics obtained
from the FP equations and MC or PCM methods. We conclude in section 5. In
Appendices A and B, we provide algorithms of the rejection method and simulation
of CP processes. We also provide the probability distributions to simplify the series
representation in Appendix C.

2. Numerical simulation of TαS processes. In general there are three ways
to generate a Lévy process [49]: random walk approximation, series representation,
and CP approximation. For a TαS process, the distribution of increments is not
explicitly known (except for α = 1/2) [11]. Therefore, in the following we discuss the
CP approximation and the series representation for a TαS process.

2.1. Simulation of TαS processes by CP approximation. In the CP ap-
proximation, we simulate the jumps larger than δ as a CP process and replace jumps
smaller than δ by their expectation as a drift term [11]. Here we explain the method
to approximate a TαS subordinator Xt (without a Gaussian part and a drift) with the

Lévy measure ν(x) = ce−λx

xα+1 Ix>0 (positive jumps only); this method can be generalized
to a TαS process with both positive and negative jumps. The CP approximation Xδ

t

for this TαS subordinator Xt is

(2.1)

Xt ≈ Xδ
t =

∑
s≤t

�XsI�Xs≥δ +E

⎡
⎣∑

s≤t

�XsI�Xs<δ

⎤
⎦

=
∞∑
i=1

Jδ
i It≤Ti + bδt ≈

Qcp∑
i=1

Jδ
i It≤Ti + bδt.

We introduce Qcp here as the number of jumps that occurred before time t. The first
term

∑∞
i=1 J

δ
i It≤Ti is a compound Poisson process with jump intensity

(2.2) U(δ) = c

∫ ∞

δ

e−λxdx

xα+1

and jump size distribution pδ(x) = 1
U(δ)

ce−λx

xα+1 Ix≥δ for Jδ
i . The jump size random vari-

ables (RVs) Jδ
i are generated via the rejection method [13], given in Appendix A. Here,

Ti is the ith jump arrival time of a Poisson process with intensity U(δ). The accuracy
of the CP approximation method can be improved by replacing the smaller jumps
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by a Brownian motion [2], when the growth of the Lévy measure near zero is fast.
The second term functions as a drift term, bδt, resulting from truncating the smaller

jumps. The drift is bδ = c
∫ δ

0
e−λxdx

xα . This integration diverges when α ≥ 1, therefore
the CP approximation method only applies to TαS processes with 0 < α < 1. In
this paper, both the intensity U(δ) and drift bδ are calculated via numerical integra-
tions with Gauss-quadrature rules [16] with a specified relative tolerance (RelTol).4

In general, there are two algorithms to simulate a compound Poisson process [11]:
the first method is to simulate the jump time Ti by exponentially distributed RVs
and take the number of jumps Qcp as large as possible; the second method is to first
generate and fix the number of jumps, then generate the jump time by uniformly
distributed RVs on [0, t]. Algorithms for simulating a CP process (the second kind)
with intensity and the jump size distribution in their explicit forms are known on
a fixed time grid [11], given in Appendix B. In order to simulate the sample paths
of a symmetric TαS process with a Lévy measure given in (1.3), we generate two
independent TαS subordinators via the CP approximation and subtract one from the
other. The accuracy of the CP approximation is determined by the jump truncation
size δ.

2.2. Simulation of TαS processes by series representation. Let {εj},
{ηj}, and {ξj} be sequences of independently and identically distributed (i.i.d.) RVs
such that P(εj = ±1) = 1/2, ηj ∼ Expo-nential(λ), and ξj ∼ Uniform(0, 1). Let {Γj}
be arrival times in a Poisson process with rate one. Let {Uj} be i.i.d. uniform RVs on
[0, T ]. Then, a TαS process Lt with Lévy measure given in (1.3) can be represented
as [51]

(2.3) Lt =
+∞∑
j=1

εj

[(
αΓj

2cT

)−1/α

∧ ηjξ
1/α
j

]
I{Uj≤t}, 0 ≤ t ≤ T.

Equation (2.3) converges almost surely as uniformly in t [48]. In numerical simu-
lations, we truncate the series in (2.3) up to Qs terms. The accuracy of a series
representation approximation is determined by the number of truncations Qs.

2.3. Simulating inverse Gaussian (IG) subordinators (α = 1/2). In or-
der to compare the numerical performance of CP approximation and series represen-
tation of TαS processes, we simulate the trajectories of an IG subordinator by the
two methods. An IG subordinator is a TαS subordinator with a Lévy measure (with
one-sided jumps, α = 1/2) as

(2.4) νIG =
ce−λx

x3/2
Ix>0.

The probability density function (PDF) at time t for an IG subordinator is known to
be [11]

(2.5) pt(x) =
ct

x3/2
e2ct

√
πλe−λx−πc2t2/x, x > 0.

We perform the one-sample Kolmogorov–Smirnov statistic (K-S test) [34] between the
empirical cumulative distribution function (CDF) and the exact reference CDF:

(2.6) KS = sup
x

|Fem(x)− Fex(x)|, x ∈ supp(F ).

4The RelTol of numerical integration is defined as |q−Q|
|Q| , where q is the computed value of the

integral and Q is the unknown exact value.
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Fig. 1. Empirical histograms of an IG subordinator (α = 1/2) simulated via the CP approxi-
mation at t = 0.5: the IG subordinator has c = 1, λ = 3; each simulation contains s = 106 samples
(we zoom in and plot x ∈ [0, 1.8] to examine the smaller jumps approximation); they have different
jump truncation sizes as δ = 0.1 (left, dotted, CPU time 1450 s), δ = 0.02 (middle, dotted, CPU
time 5710 s), and δ = 0.005 (right, dotted, CPU time 38531 s). The reference PDFs are plotted in
red solid lines; the one-sample K-S test values are calculated for each plot; the RelTol of integration
in U(δ) and bδ is 1 × 10−8. These runs were done on Intel (R) Core (TM) i5-3470 CPU @ 3.20
GHz in MATLAB.

Fig. 2. Empirical histograms of an IG subordinator (α = 1/2) simulated via the series represen-
tation at t = 0.5: the IG subordinator has c = 1, λ = 3; each simulation is done on the time domain
[0, 0.5] and contains s = 106 samples (we zoom in and plot x ∈ [0, 1.8] to examine the smaller jumps
approximation); they have different numbers of truncations in the series as Qs = 10 (left, dotted,
CPU time 129 s), Qs = 100 (middle, dotted, CPU time 338 s), and Qs = 1000 (right, dotted, CPU
time 2574 s). The reference PDFs are plotted in red solid lines; the one-sample K-S test values are
calculated for each plot. These runs were done on Intel (R) Core (TM) i5-3470 CPU @ 3.20 GHz
in MATLAB.

This one-sample K-S test quantifies a distance between the exact IG process and the
approximated one (by the CP approximation or the series representation).

In Figures 1 and 2, we plot the empirical histograms (with the area normalized
to one) of an IG subordinator at time t, simulated via the CP approximation with
different small jump truncation sizes δ (explained in section 2.1) and via the series
representation with different numbers of truncations in the series Qs (explained in
section 2.2), against the reference PDF in (2.5). We observe that the empirical his-
tograms fit the reference PDF better when δ → 0 in the CP approximation in Figure
1 and when Qs increases in the series representation. The quality of fitting is shown
quantitatively via the K-S test values given in each plot.

In both Figures 1 and 2, we run one million samples on 1000 bins for each his-
togram (known as the square-root choice [54]). We zoom in and plot the parts of
histograms on [0, 1.8] to examine how smaller jumps are captured. We observe that
in both Figures 1 and 2 when δ is large or Qs is small, the distribution of small jumps
is not well approximated. Therefore, both methods suffer from accuracy if smaller
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jumps have a big contribution to the solution of SPDEs, e.g., when α or λ is large.
Furthermore, when δ is large in the CP approximation (see δ = 0.1 in Figure 1), the
big jumps are well approximated although the small ones are not; when Qs is small
in the series representation, neither big nor small jumps are well approximated (see
Qs = 10 in Figure 2). When the cost is limited, this shows an advantage of using
the CP approximation, when big jumps have a larger contribution to the solution of
SPDEs.

3. Simulation of reaction-diffusion equations with TαS white noises.
In this section, we will provide numerical results for solving the stochastic reaction-
diffusion equation (1.1). We will perform and compare four stochastic simulation
methods to obtain the statistics: MC with CP approximation (MC/CP), MC with
series representation (MC/S), PCM with CP approximation (MC/CP), and PCM
with series representation (PCM/S).

The integral form of (1.1) is

(3.1) u(t, x) = eμt−
π2

4 t sin
(π
2
x
)
+ εeμt

∫ t

0

e−μτdLτ , x ∈ [0, 2],

where the stochastic integral is an Itô integral over a TαS process [46]. The mean of
the solution is

(3.2) Eex[u(t, x)] = eμt−
π2

4 t sin
(π
2
x
)
.

By the Itô isometry [37] and (3.2), the second moment of the solution is

(3.3) Eex[u
2(t, x;ω)] = e2μt−

π2

2 t sin2
(π
2
x
)
+

cε2e2μt

μλ2−α
(1 − e−2μt)Γ(2− α).

Let us define the L2 norm of the error in the second moment l2u2(t) to be

(3.4) l2u2(t) =
||Eex[u

2(x, t;ω)]−Enum[u2(x, t;ω)]||L2([0,2])

||Eex[u2(x, t;ω)]||L2([0,2])
,

where Enum[u2(x, t;ω)] is the second moment evaluated by numerical simulations.

3.1. Comparing CP approximation and series representation in MC.
First we will compare the accuracy and convergence rate between MC/CP and MC/S
in solving (1.1) by MC. In MC, we generate the trajectories of Lt (a TαS process with
the Levy measure given in (1.3)) on a fixed time grid with st the number of time steps
({t0 = 0, t1, t2, . . . , tst = T }). We solve (1.1) via the first-order Euler’s method [43] in
the time direction with a time step �t = tn+1 − tn:

(3.5) un+1 − un =

(
∂2un

∂x2
+ μun

)
�t+ ε(Ltn+1 − Ltn).

We discretize the space by Nx = 500 Fourier collocation points [21] on the domain
[0, 2].

In Table 1, we plot the l2u2 errors at a fixed time T versus the sample size s
by the MC/CP and the MC/S, for λ = 10 (upper) and for λ = 1 (lower, with a less
tempered tail). First for the cost, the MC/CP costs less CPU time than the MC/S,
e.g., when λ = 10 in Table 1, the MC/S with Qs = 10 and s = 65536 takes twice the
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Table 1

MC/CP vs. MC/S: error l2u2(T ) of the solution for (1.1) versus the number of samples s with
λ = 10 (upper) and λ = 1 (lower). T = 1, c = 0.1, α = 0.5, ε = 0.1, μ = 2 (upper and lower). Spatial
discretization: Nx = 500 Fourier collocation points on [0, 2]; temporal discretization: first-order
Euler scheme in (3.5) with time steps �t = 1× 10−5. In the CP approximation, RelTol = 1× 10−8

for integration in U(δ).

s (λ = 10) 256 1024 4096 16384 65536 262144

MC/S Qs = 10 3.9× 10−3 6.0× 10−4 1.6× 10−4 6.8× 10−5 2.3× 10−5 3.5× 10−6

MC/CP δ = 0.1 5.4× 10−4 6.2× 10−4 6.3× 10−4 4.3× 10−4 4.3× 10−4 4.5× 10−4

MC/CP δ = 0.01 3.6× 10−4 1.8× 10−5 9.8× 10−5 1.3× 10−5 3.5× 10−6 2.0× 10−5

s (λ = 1) 256 1024 4096 16384 65536 262144

MC/S Qs = 10 1.7× 10−2 1.4× 10−2 6.1× 10−3 7.6× 10−3 4.4× 10−3 6.6× 10−4

MC/CP δ = 0.1 1.8× 10−3 4.9× 10−3 2.4× 10−3 2.5× 10−3 5.1× 10−4 2.7× 10−4

MC/CP δ = 0.01 8.6× 10−3 3.8× 10−3 5.8× 10−3 2.0× 10−3 1.1× 10−4 3.6× 10−5

CPU time as the MC/CP with δ = 0.01 and s = 65536 even though the MC/CP is
more accurate. Second, to assess the accuracy of the methods, the MC/CP is more
accurate than MC/S even though it takes about half the CPU time, e.g., the MC/CP
with δ = 0.01 and the MC/S with Qs = 10. Third, we observe that decreasing δ
in the MC/CP to improve the accuracy is more effective with a small s when more
smaller jumps are present (larger λ). For example, when λ = 10, δ = 0.01 starts to be
more accurate than δ = 0.1 when s = 1024; when λ = 10, δ = 0.01 starts to be more
accurate than δ = 0.1 when s = 65536. This can be explained by the fact that large
jumps have a greater contribution to the solution and decreasing δ in the MC/CP
makes a great difference in sampling smaller jumps as in Figure 1.

3.2. Comparing CP approximation and series representation in PCM.
Next, we will compare the accuracy and efficiency of PCM/CP and PCM/S in solving
(1.1). In order to evaluate the moments of solutions, PCM [55], as an integration
method on the random space, is based on the Gauss-quadrature rules [16]. Suppose
the solution is a function of a finite number of independent RVs ({Y 1, Y 2, . . . , Y n)})
as v(Y 1, Y 2, . . . , Y n), the mth moment of the solution, is evaluated by

(3.6) E[vm(Y 1, Y 2, . . . , Y n)] =

d1∑
i1=1

. . .

dn∑
in=1

vm(y1i1 , y
2
i2 , . . . , y

n
in)w

1
i1 . . . w

n
in ,

where wj
ij

and yjij are the ijth Gauss-quadrature weight and collocation point for

Y j , respectively. The simulations are run on (Πn
i=1di) deterministic sample points

(y1i1 , . . . , y
n
in
) in the n-dimensional random space. In the CP approximation, the TαS

process Lt is approximated via Lt ≈
∑Qcp

i=1 J
δ
i It≤Ti + bδt, where Qcp is the number of

jumps we consider. As we mentioned in section 2.1 there are two ways to simulate a
compound Poisson process. Here we treat the number of jumps Qcp as a modeling pa-
rameter by the CP approximation and simulate the time between two jumps Ti+1−Ti

by exponentially distributed RVs with intensity U(δ). The PCM/CP method contains
two parameters: the jump truncation size δ and the number of jumps we consider Qcp.
Therefore, the PCM/CP simulations of problem (1.1) are run on the collocation points
for RVs Jδ

i and Ti in the 2Qcp-dimensional random space (with d2Qcp sample points);
Qcp is the number of jumps truncated. In the series representation, the TαS process

Lt is approximated via Lt ≈ ∑Qs

j=1 εj[(
αΓj

2cT )−1/α ∧ ηjξ
1/α
j ]I{Uj≤t} on the simulation
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domain [0, T ]. To reduce the number of RVs (therefore, to decrease the number of

dimensions in the random space), we calculate the distribution of [(
αΓj

2cT )−1/α∧ηjξ
1/α
j ]

for a fixed j in Appendix C and treat it as one RV for each j. Therefore, the PCM/S
simulations under the series representation are run on the quadrature points for RVs

εj , [(
αΓj

2cT )−1/α ∧ ηjξ
1/α
j ], and Uj in the 3Qs-dimensional random space (with d3Qs

sample points). In the following, we generate the stochastic collocation points numer-
ically based on the moments [42]. In Appendix D we introduce a method to generate
orthogonal polynomials for a given measure with finite moments [56]. The stochastic
collocation points are generated by the Gaussian quadrature rule [19]. Alternative
methods can also be used such as the Stieltjes’ method and the modified Chebyshev
method [17]. Here, we assume each RV has the same number of collocation points d.

However, typically for this problem (1.1) we only need d(Qcp + 1) sample points
in PCM/CP instead of d2Qcp and only dQs sample points in PCM/S instead of d3Qs .
Using the CP approximation given in (2.1), the second moment of the solution in
(3.1) can be approximated by

(3.7) E[u2(t, x;ω)] ≈ e2μt−
1
2π

2t sin2
(π
2
x
)
+ ε2e2μtE[(Jδ

1 )
2]

Qcp∑
i=1

E[e−2μTi ].

Using the series representation given in (2.3), the second moment of the solution in
(3.1) can be approximated by

(3.8)

E[u2(t, x;ω)] ≈ e2μt−
1
2π

2t sin2
(π
2
x
)

+ ε2e2μt
1

2μT
(1− e−2μT )

Qs∑
j=1

E

⎡
⎣((αΓj

2cT

)−1/α

∧ ηjξ
1/α
j

)2
⎤
⎦ .

The distribution of RV [(
αΓj

2cT )−1/α ∧ ηjξ
1/α
j ] is given in Appendix C. Here we sam-

ple the moments of solution directly from (3.7) for the PCM/CP and (3.8) for the
PCM/S; therefore, we significantly decrease the sample size with the integral form of
the solution in (3.1). For example, in this typical problem we may evaluate E[e−2μTi ]
for each i separately in (3.7). Indeed, such a reduction of the number of samples in
the PCM method is possible whenever the following condition can be met. Suppose
we have Q independent RVs {Zi, i = 1, . . . , Q}. If the expectation of a functional of
{Zi, i = 1, . . . , Q} is a functional of expectation of some function of each Zi separately,

(3.9) E[F (Z1, . . . , Zd)] = G(E[f1(Z1)], . . . , E[fd(Zd)]),

we may evaluate each E[fi(Zi)] “separately” via the PCM with d collocation points.
In this way, we reduce the number of samples from dQ to dQ.

In Figure 3, we plot the l2u2(T ) errors of the solution for (1.1) versus the number
of jumps Qcp (via PCM/CP) or Qs (via PCM/S). In order to investigate the Qcp and
Qs convergence, we apply a sufficient number of collocation points for each RV until
the integration is up to a certain RelT ol. We observe three things in Figure 3.

1. For smaller values of Qs and Qcp, PCM/S is more accurate and converges
faster than PCM/CP, because bigger jumps contribute more to the solution
and PCM/S samples bigger jumps more efficiently than PCM/CP as we ob-
served in Figures 1 and 2.
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Fig. 3. PCM/CP vs. PCM/S: error l2u2(T ) of the solution for (1.1) versus the number of
jumps Qcp (in PCM/CP) or Qs (in PCM/S) with λ = 10 (left) and λ = 1 (right). T = 1, c = 0.1,
α = 0.5, ε = 0.1, μ = 2, Nx = 500 Fourier collocation points on [0, 2] (left and right). In the
PCM/CP, RelTol = 1× 10−10 for integration in U(δ). In the PCM/S, RelTol = 1 × 10−8 for the

integration of E[((
αΓj

2cT
)−1/α ∧ ηjξ

1/α
j )2].

2. For intermediate values of Qs and Qcp, the convergence rate of PCM/S slows
down but the convergence rate of PCM/CP speeds up, because the contribu-
tion of smaller jumps starts to affect the accuracy since the PCM/CP samples
the smaller jumps faster than PCM/S.

3. For larger values of Qs and Qcp, both PCM/CP and PCM/S stop converging
due to their own limitations to achieve higher accuracy.

The limitations of PCM/CP and PCM/S are

• in the PCM/CP when δ is small, the integration to calculate U(δ)= c
∫∞
δ

e−λxdx
xα+1

is less accurate because of the singularity of the integrand at 0;

• in the PCM/S, the density for the RV [(
αΓj

2cT )−1/α∧ηjξ1/αj ] in (2.3) for a greater
value of j requires more collocation points (d) to accurately approximate the

expectation of any functionals of [(
αΓj

2cT )−1/α ∧ ηjξ
1/α
j ].

Within their own limitations (δ not too small, Qs not too large), the PCM/S achieves
higher accuracy than the PCM/CP; however, it costs much more computational time
especially when the TαS process Lt contains more smaller jumps. For example, when
λ = 10 in Figure 3, to achieve the same accuracy of 10−11, the PCM/S with Qs = 10
costs more than 100 times the CPU time than the PCM/CP with Qcp = 30 and
δ = 1× 10−5.

3.3. Comparing MC and PCM in CP approximation or series repre-
sentation. Next we compare the accuracy and efficiency both between MC/CP and
PCM/CP and between MC/S and PCM/S to obtain the statistics of the solution of
(1.1).

In Figure 4, we compare MC/CP and PCM/CP with the same δ (left), then
we compare MC/S and PCM/S (right). In the PCM/CP, we fix d (the number of
collocation points for each RV) and vary Qcp to obtain different numbers of sample
points s; in the PCM/S, we fix d and vary Qs to obtain different s. By (3.7) and (3.8)
we only have s = d(2Qcp + 1) instead of s = d2Qcp in the PCM/CP and dQs instead
of s = d3Qs in the PCM/S. However, we still plot the error versus s = d2Qcp in the
PCM/CP and versus s = d3Qs in the PCM/S to investigate the PCM method in case
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Fig. 4. PCM vs. MC: error l2u2(T ) of the solution for (1.1) versus the number of samples
s obtained by MC/CP and PCM/CP with δ = 0.01 (left) and MC/S with Qs = 10 and PCM/S
(right). T = 1 , c = 0.1, α = 0.5, λ = 1, ε = 0.1, μ = 2 (left and right). Spatial discretization:
Nx = 500 Fourier collocation points on [0, 2] (left and right); temporal discretization: first-order
Euler scheme in (3.5) with time steps �t = 1×10−5 (left and right). In both MC/CP and PCM/CP,
RelTol = 1× 10−8 for integration in U(δ).

the dimension of the random space cannot be reduced. With the dimension reduction,
PCM/CP and PCM/S outperform the convergence of MC/CP and MC/S drastically;
without the dimension reduction, the PCM/S seems to be still more accurate than
the MC/S, however the slope of convergence of PCM/CP slows down for a larger
s = d2Qcp . We also observe during the numerical experiment that the error is clearly
decreased when we increase Qs or Qcp but it is not as clear when we increase d from
2 to 3.

4. Simulation of overdamped Langevin equations with TαS white noises.
In this section, we will present two methods for simulating the statistics for (1.2) by
solving the corresponding generalized FP equation. In the first method, we solve for
the density by approximating the TαS process Lt by a CP process, while in the sec-
ond method, we solve a TFPDE. We will compare these two FP equation approaches
with the previous MC and PCM methods via the empirical histograms and errors of
moments.

4.1. Generalized FP equations for overdamped Langevin equations with
TαS white noises. It is known that for any overdamped Langevin equation with a
Lévy white noise ηt,

(4.1) dx(t) = f(x(t), t)dt + dηt(ω), x(0) = x0,

the PDF of the solution P (x, t) satisfies the following generalized FP equation [12]

(4.2)
∂

∂t
P (x, t) = − ∂

∂x

[
f(x, t) P (x, t)

]
+ F−1

{
Pk(t) lnSk

}
.

Sk is the characteristic function (ch.f.) of the process ηt at time t = 1, as Sk =
E[e−ikη1 ]. We define the Fourier transformation for a function v(x) as F{v(x)} =

vk =
∫ +∞
−∞ dxe−ikxv(x). Pk(t) is the ch.f. of x(t), as Pk(t) = E[e−ikx(t)]. The inverse

Fourier transformation is defined as F−1{vk(x)} = v = 1
2π

∫ +∞
−∞ dxeikxvk(x).
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By the CP approximation with the jump truncation size δ of the TαS process Lt

for (1.2), the density Pcp(x, t) of the solution x(t) satisfies [12]

(4.3)
∂

∂t
Pcp(x, t) =

[
σ−2U(δ)

]
Pcp(x, t)+σx

∂Pcp(x, t)

∂x
+

∫ +∞

−∞
dyPcp(x−y, t)

ce−λ|y|

|y|α+1

with the initial condition Pcp(x, 0) = δ(x− x0), where U(δ) is defined in (2.2).
We also obtain the generalized FP equations as TFPDE for the density Pts(x, t)

directly from (4.2) without approximating Lt by a CP process for (1.2). Due to the
fact that when 0 < α < 1 and 1 < α < 2, the ch.f.s for L1, Sk, are in different forms,
the density Pts(x, t) satisfies different equations for each case.

When 0 < α < 1, Sk = exp [−D{(λ+ ik)α − λα}] [11, 36], where D = c
αΓ(1−α),

Γ(t) =
∫ +∞
0

xt−1e−xdx, the density Pts(x, t) satisfies

(4.4)

∂

∂t
Pts(x, t) =

∂

∂x

(
σxPts(x, t)

)

−D(α)

(
−∞Dα,λ

x Pts(x, t) + xD
α,λ
+∞Pts(x, t)

)
, 0 < α < 1,

with the initial condition Pts(x, 0) = δ(x−x0). The left and right Riemann–Liouville
tempered fractional derivatives are defined as [4, 36]:

(4.5) −∞Dα,λ
x f(x) = e−λx −∞Dα

x [e
λxf(x)]− λαf(x), 0 < α < 1,

and

(4.6) xD
α,λ
+∞f(x) = eλx xD

α
+∞[e−λxf(x)] − λαf(x), 0 < α < 1.

In the above definitions, for α ∈ (n − 1, n) and f(x) (n − 1)-times continuously
differentiable on (−∞,+∞), −∞Dα

x and xD
α
+∞ are left and right Riemann–Liouville

fractional derivatives defined as [4]

−∞Dα
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

−∞

f(ξ)

(x− ξ)α−n+1
dξ,(4.7)

xD
α
+∞f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ +∞

x

f(ξ)

(ξ − x)α−n+1
dξ.(4.8)

When 1 < α < 2, Sk = exp[D{(λ + ik)α − λα − ikαλα−1}] [11, 36], where
D(α) = c

α(α−1)Γ(2− α), the density Pts(x, t) satisfies

(4.9)

∂

∂t
Pts(x, t) =

∂

∂x

(
σxPts(x, t)

)

+D(α)

(
−∞Dα,λ

x Pts(x, t) + xD
α,λ
+∞Pts(x, t)

)
, 1 < α < 2,

with the initial condition Pts(x, 0) = δ(x−x0). The left and right Riemann–Liouville
tempered fractional derivatives are defined as [4, 36]

(4.10) −∞Dα,λ
x f(x) = e−λx−∞Dα

x [e
λxf(x)]− λαf(x)− αλα−1f ′(x), 1 < α < 2,

and

(4.11) xD
α,λ
+∞f(x) = eλxxD

α
+∞[e−λxf(x)] − λαf(x) + αλα−1f ′(x), 1 < α < 2.
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The left and right Riemann–Liouville fractional derivatives −∞Dα
x and xD

α
+∞ can be

numerically implemented via the Grünwald–Letnikov finite difference form for 0 <
α < 1 [35, 36, 44]:

(4.12)

{
−∞Dα

xf(x) = limh→0

∑+∞
j=0

1
hαWjf(x− jh), 0 < α < 1,

xD
α
+∞f(x) = limh→0

∑+∞
j=0

1
hαWjf(x+ jh), 0 < α < 1.

Here, −∞Dα
x and xD

α
+∞ are implemented via the shifted Grünwald–Letnikov finite

difference form for 1 < α < 2 [36, 44]:

(4.13)

{
−∞Dα

x f(x) = limh→0

∑+∞
j=0

1
hαWjf(x− (j − 1)h), 1 < α < 2,

xD
α
+∞f(x) = limh→0

∑+∞
j=0

1
hαWjf(x+ (j − 1)h), 1 < α < 2.

Note that Wk = ( αk ) (−1)k = Γ(k−α)
Γ(−α)Γ(k+1) can be derived recursively via W0 =

1,W1 = −α,Wk+1 = k−α
k+1Wk. In the following numerical experiments, we will solve

(4.4) and (4.9) by the aforementioned first-order numerical fractional finite differ-
ence scheme for spatial discretization on a sufficiently large domain [−L,L] and fully
implicit scheme for temporal discretization with time step Δt. Let us denote the
approximated solution of Pts(xi, tn) as Pn

i . Let us denote xi = 2L
Nx

i − L = hi − L,

i = 0, 1, . . . , Nx, where h is the grid size. When 0 < α < 1, we use the following fully
implicit discretization scheme for (4.4):
(4.14)

Pn+1
i − Pn

i

Δt
=

(
σ + 2D(α)λα

)
Pn+1
i + σxi

Pn+1
i+1 − Pn+1

i−1

2h

− D(α)

hα
e−λxi

i∑
j=0

Wje
λxi−jPn+1

i−j − D(α)

hα
eλxi

Nx−i∑
j=0

Wje
−λxi+jhPn+1

i+j .

When 1 < α < 2, we use the following fully implicit discretization scheme for (4.9):
(4.15)

Pn+1
i − Pn

i

Δt

=

(
σ − 2D(α)λα

)
Pn+1
i + σxi

Pn+1
i+1 − Pn+1

i−1

2h

+
D(α)

hα
e−λxi

i+1∑
j=0

Wje
λxi−j+1Pn+1

i−j+1 +
D(α)

hα
eλxi

Nx−i+1∑
j=0

Wje
−λxi+j−1Pn+1

i+j−1.

In both the CP approximation and the series representation, we numerically approx-
imate the initial condition by the delta sequences [1] either with sinc functions5

(4.16) δDn =
sin(nπ(x − x0))

π(x− x0)
, lim

n→+∞

∫ +∞

−∞
δDn (x)f(x)dx = f(0),

or with Gaussian functions

(4.17) δGn = exp(−n(x− x0)
2), lim

n→+∞

∫ +∞

−∞
δGn (x)f(x)dx = f(0).

5We approximate the initial condition by keeping the highest peak δDn in the center and setting
the value on the rest of the domain to be zeros. After that we normalize the area under the peak to
be one.
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Fig. 5. Zoomed in density Pts(t, x) plots for the solution of (1.2) at different times obtained
from solving (4.4) for α = 0.5 (left) and (4.9) for α = 1.5 (right): σ = 0.4, x0 = 1, c = 1, λ = 10
(left); σ = 0.1, x0 = 1, c = 0.01, λ = 0.01 (right). We have Nx = 2000 equidistant spatial points
on [−12, 12] (left); Nx = 2000 points on [−20, 20] (right). Time step is �t = 1 × 10−4 (left) and
�t = 1× 10−5 (right). The initial conditions are approximated by δD20 (left and right).

In Figure 5 we simulate the density evolution for the solution of (1.2) obtained
from the TFPDEs (4.4) and (4.9). The peak of the density moves towards smaller
values of x(t) due to the −σx(t;ω)dt term. The noise dLt(ω) changes the shape of
the density.

The integral form of (1.2) is given by

(4.18) x(t) = x0e
−σt + e−σt

∫ t

0

eστdLτ .

The mean and the second moment for the exact solution of (1.2) are

(4.19) E[x(t)] = x0e
−σt

and

(4.20) E[x2(t)] = x2
0e

−2σt +
c

σ
(1 − e−2σt)

Γ(2 − α)

λ2−α
.

Let us define the errors of the first and the second moments to be

(4.21) err1st(t) =
|E[xnum(t)]−E[xex(t)]|

|E[xex(t)]| , err2nd(t) =
|E[x2

num(t)]−E[x2
ex(t)]|

|E[x2
ex(t)]|

.

4.2. Simulating density by CP approximation. Let us simulate the den-
sity of solution x(t), Pcp(x, t), in (1.2) by approximating the TαS process Lt by a
CP process (density/CP)

∑∞
i=1 J

δ
i It≤Ti + bδt [11]. We solve (4.3) for Pcp(x, t) via

the second-order Runge–Kutta (RK2) for temporal discretization and via Fourier
collocation on a sufficiently large domain [−L,L] with Nx equidistant points {xi =
−L + 2L

Nx
i, i = 1, . . . , Nx}. For each xi we simulate the integral in the last term∫ +∞

−∞ dyPcp(xi − y, t) ce
−λ|y|

|y|α+1 via the trapezoid rule taking y to be all the other points

on the grid other than xi. We take δ = 2L
Nx

to include all the points on the Fourier
collocation grid in this integration term.
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Fig. 6. Density/CP vs. PCM/CP with the same δ: errors err1st and err2nd of the solution
for (1.2) versus time obtained by the density equation (4.3) with CP approximation and PCM/CP
in (4.22). c = 0.5, α = 0.95, λ = 10, σ = 0.01, x0 = 1 (left); c = 0.01, α = 1.6, λ = 0.1, σ = 0.02,
x0 = 1 (right). In the density/CP: RK2 with time steps �t = 2 × 10−3, 1000 Fourier collocation
points on [−12, 12] in space, δ = 0.012, RelTol = 1 × 10−8 for U(δ), and initial condition as δD20
(left and right). In the PCM/CP: the same δ = 0.012 as in the density/CP.

We also simulate the moments for the solution of (1.2) by PCM/CP. Through
the integral form (4.18) of the solution we directly sample the second moment of the
solution by the following equation:

(4.22) E[x2(t)] ≈ x2
0e

−2σt + e−2σtE[(Jδ
1 )

2]

Qcp∑
i=1

E[e2σTi ].

We generate d collocation points for each of the RVs (Jδ
1 and {Ti}) in (4.22) to obtain

the moments.
In Figure 6, we plot the errors err1st and err2nd versus time for 0 < α < 1 and

1 < α < 2 of the density/CP and PCM/CP with the same jump truncation size δ.
The error of the density/CP comes from (1) neglecting the jumps smaller than δ, (2)

from evaluating
∫ +∞
−∞ dyPcp(x− y, t) ce

−λ|y|
|y|α+1 by the trapezoid rule, (3) from numerical

integration to calculate U(δ), and (4) from the delta sequence approximation of the
initial condition. The error of the PCM/CP comes from (1) the jump truncation
up to size δ, (2) the finite number Qcp terms we consider in the CP approximation,
(3) numerical integration for each E[(Jδ

1 )
2] and E[e2σTi ], and (4) the error from the

long-term integration in the generalized polynomial chaos resulting from the fact that
only a finite number of polynomial modes is considered and the error accumulates
with respect to time (an error due to random frequencies) [53]. First, we observe
that the error growth with time from the PCM/CP is faster than the density/CP for
both plots in Figure 6. Then, we observe in Figure 6 that when Lt has more larger
jumps (λ = 0.1, right), the PCM/CP with only Qcp = 2 is more accurate than the
density/CP with the same δ = 0.012. (Larger values of Qcp maintain the same level
of accuracy with Qcp = 2 or 5 here because the error is mainly determined by the
choice of δ.)

4.3. Simulating density by TFPDEs. As an alternative method to simulate
the density of the solution for (1.2), we will simulate the density Pts(x, t) by solving
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Fig. 7. TFPDE vs. PCM/CP: error err2nd of the solution for (1.2) versus time with λ = 10
(left) and λ = 1 (right). Problems we are solving: α = 0.5, c = 2, σ = 0.1, x0 = 1 (left and right).
For PCM/CP, RelTol = 1×10−8 for U(δ) (left and right). For the TFPDE, finite difference scheme
in (4.14) with �t = 2.5 × 10−5, Nx equidistant points on [−12, 12], initial condition given by δD40
(left and right).

the TFPDEs (4.4) for 0 < α < 1 and (4.9) for 1 < α < 2. The corresponding finite
difference schemes are given in (4.14) and (4.15).

In Figure 7, we plot the errors for the second moments versus time both by the
PCM/CP and the TFPDEs. In the TFPDEs, we solve (4.4) and (4.9) by the finite
difference schemes given in (4.14) and (4.15). The error of the TFPDEs mainly comes
from (1) approximating the initial condition by delta sequences, and (2) temporal or
spatial errors from solving (4.4) and (4.9).

In Figure 7 we experiment with λ = 10 (left, with fewer larger jumps) and with
λ = 1 (right, with more larger jumps). First, we observe that with the same resolution
for x(t) (Nx = 2000 on [−12, 12]) and temporal resolution (�t = 2.5 × 10−5), the
err2nd errors from the TFPDE method grow slower when λ = 1 than λ = 10, because
a more refined grid is required to resolve the behavior of more smaller jumps (larger λ)
between different values of x(t). Second, we observe that the error from the PCM/CP
grows slightly faster than the TFPDE method. In PCM/CP, the error from the long-
term integration is inevitable with a fixed number of collocation points d. Third,
without the dimension reduction in the PCM/CP (if we compute it on d2Qcp points
rather than d(Qcp + 1) points), the TFPDE consumes much less CPU time than the
PCM/CP with a higher accuracy.

In Figure 8, we plot the density Pst(x, t) obtained from the TFPDEs in (4.4) and
(4.9) at two different final time values T and the empirical histograms obtained from
the MC/CP with the first-order Euler scheme

(4.23) xn+1 − xn = −σxn�t+ (Ltn+1 − Ltn).

Although we do not have the exact formula for the distribution of x(t), we observe
that the density from MC/CP matches the density from TFPDEs, indicated by the
one-sample K-S test defined in (2.6).

5. Conclusions. In this paper we first compared the CP approximation and
the series representation for a TαS by matching the empirical histogram of an IG
subordinator with its known distribution. The one-sample K-S test values indicated
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Fig. 8. Zoomed in plots for the density Pts(x, T ) by solving the TFPDE (4.4) and the empirical
histogram by MC/CP at T = 0.5 (left) and T = 1 (right): α = 0.5, c = 1, λ = 1, x0 = 1, and
σ = 0.01 (left and right). In the MC/CP, sample size s = 105, 316 bins, δ = 0.01, RelTol = 1×10−8

for U(δ), time step �t = 1 × 10−3 (left and right). In the TFPDE, finite difference scheme given
in (4.14) with �t = 1 × 10−5 in time, Nx = 2000 equidistant points on [−12, 12] in space, and the
initial conditions are approximated by δD40 (left and right). We perform the one-sample K-S tests
here to test how the two methods match.

a better fitting between the histogram and the distribution if we decreased the jump
truncation size δ in the CP approximation and increased the number of terms Qs

in the series representation. When the cost is limited (large δ, small Qs, the CP
approximation), the large jumps are better approximated by the CP approximation.

Next we simulated the moment statistics for stochastic reaction-diffusion equa-
tions with additive TαS white noises, via four stochastic simulation methods: MC/CP,
MC/S, PCM/CP, and PCM/S. First, in a comparison between the MC/CP and the
MC/S, we observed that for almost the same accuracy, MC/CP costs less CPU time
than the MC/S. We also observed that in the MC/CP, decreasing δ was more effec-
tive in reducing the error when the tail of the Lévy measure of the TαS process was
more tempered. Second, in a comparison between the PCM/CP and the PCM/S,
we observed that for a smaller sample size the PCM/CP converged faster because it
captured the feature of larger jumps faster than the PCM/S, while for a larger sam-
ple size the PCM/S converged faster than the PCM/CP. However, the convergence
of both PCM/CP and PCM/S slows down for higher accuracy due to the limitations
discussed in section 3.2. We also introduced a dimension reduction in the PCM/CP
and the PCM/S for this problem in Section 3.2. Third, we compared the efficiency
between MC/CP and PCM/CP, and between MC/S and PCM/S. With the dimension
reduction the PCM outperforms the efficiency of MC dramatically in evaluating the
moment statistics. Without the dimension reduction, the PCM/S still outperforms
the efficiency of MC/S for the same accuracy.

Subsequently, we simulated the stochastic overdamped Langevin equations with
additive TαS white noises. We provided two different ways of simulating the gen-
eralized FP equations that describe the density of the solution: first we solved the
generalized FP equation as an integral equation by approximating the TαS process
as CP processes; then we solved the generalized FP equations as TFPDEs, in differ-
ent forms for 0 < α < 1 and 1 < α < 2. The integral equations served as a good
tool to predict the moment statistics in section 4.2. We observed that the TFPDEs
provided more accurate moment statistics than the PCM/CP with much less compu-
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tational cost without dimensional reduction in the PCM/CP. We also observed that
the empirical histogram via MC/CP matches the PDF from the TFPDEs.

Finally, we want to point out that the four stochastic simulation methods (MC/CP,
MC/S, PCM/CP, PCM/S) and the simulation of the generalized FP equations are
not restricted to SPDEs with TαS processes, but they are applicable to SPDEs with
any Lévy jump processes with known Lévy measures. In this paper we aim to develop
new methods in relatively simple models with additive noise but in the future we will
address nonlinear dynamics and multiplicative noise.

Appendix A. Algorithm to generate RVs with distribution pδ(x) =
1

U(δ)
ceλx

xα+1 Ix≥δ for CP approximation [13]. The distribution pδ(x) can be bounded

by

(A.1) pδ(x) ≤ δ−αe−λδ

αU(δ)
f δ(x),

where f δ(x) = αδ−α

xα+1 Ix≥δ. The algorithm is [11, 13] the following.

Algorithm 1. Generate RVs with distribution pδ(x) = 1
U(δ)

ceλx

xα+1 Ix≥δ.

REPEAT
Generate RVs W and V : independent and uniformly distributed on [0, 1]
Set X = δW−1/α

Set T = fδ(X)δ−αe−λδ

pδ(X)αU(δ)

UNTIL V T ≤ 1
RETURN X .

Appendix B. Algorithm for CP processes [11]. Here we describe how to
simulate the trajectories of a CP process with intensity U(δ) and jump size distribution
νδ(x)
U(δ) , on a simulation time domain [0, T ] at time t. The algorithm to generate sample

paths for CP processes is given in Algorithm 2.

Algorithm 2. Algorithm for CP processes without a drift.
• Simulate an RV N from Poisson distribution with parameter U(δ)T , as the
total number of jumps on the interval [0, T ].

• Simulate N independent RVs, Ti, uniformly distributed on the interval [0, T ],
as jump times.

• Simulate N jump sizes, Yi with distribution νδ(x)
U(δ) .

• Then the trajectory at time t is given by
∑N

i=1 ITi≤tYi.

Appendix C. PDF of [(
αΓj

2cT
)−1/α∧ηjξ

1/α
j ] in series representation (2.3).

Let us denote Aj = (
αΓj

2cT )−1/α and Bj = ηjξ
1/α
j for a fixed j ∈ {1, 2, 3, . . .}.

The distribution of Aj is calculated by the following:

(C.1) FAj (A) = P

((
αΓj

2cT

)−1/α

≤ A

)
= P

(
Γj ≥ 2cT

αAα

)
=

∫ +∞

2cT
αAα

e−xx−1+j

Γ(j)
dx.

Therefore, the distribution of A is

(C.2) fAj (A) =
dFA

dA
=

2cT

Γ(j)Aα+1
e−

2cT
αAα

(
2cT

αAα

)−1+j

.
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The distribution of Bj is derived by product distribution:

(C.3) fBj (B) = αλ

∫ 1

0

xα−2e−λB/xdx = (αλ)(λB)α−1

∫ ∞

λB

t−αe−tdt;

when α �= 1, it can be written as incomplete Gamma functions.
Therefore, the distribution of [Aj ∧Bj ] is given by

(C.4) fAj∧Bj (x) = fAj(x)

(
1− FBj (x)

)
+ fBj (x)

(
1− FAj (x)

)
.

When 0 < α < 1,

(C.5)

fAj∧Bj (x) =

(
α

xΓ(j)
e−ttj |t= 2cT

αxα

)[
αΓ(1− α)λα

∫ +∞

x

(1− γinc(λz, 1− α))zα−1dz

]

+

[
αΓ(1− α)λα

(
1− γinc(λx, 1 − α)xα−1

) ]
γinc

(
2cT

αxα
, j

)
.

When 1 < α < 2,

(C.6) fAj∧Bj (x) =

(
α

xΓ(j)
e−ttj |t= 2cT

αxα

)[∫ +∞

x

fBj (z)dz

]
+ fBj (x)γinc

(
2cT

αxα
, j

)
.

Here the incomplete Gamma function γinc(a, b) is defined as

(C.7) γinc(a, b) =
1

Γ(a)

∫ b

0

e−tta−1dt.

Appendix D. Generation of orthogonal polynomials for arbitrary dis-
crete measure with finite moments [42, 56]. Here we introduce how to generate
orthogonal polynomials for a given measure out of its moments. Let ρ be a positive
measure with infinite support S(ρ) ⊂ R and finite moments at all orders, i.e.,

(D.1) mn =

∫
S

ξnρ(dξ) < ∞ ∀n ∈ N0,

as the nth-order moment, where N0 = {0, 1, 2, . . .}, and it is defined as a Riemann–
Stieltjes integral. There exists one unique set of orthogonal monic polynomials {Pi}∞i=0

with respect to the measure ρ such that

(D.2)

∫
S

Pi(ξ)Pj(ξ)ρ(dξ) = δijγ
−2
i , i = 0, 1, 2, . . . ,

where γi �= 0 are constants. The coefficients of the dth-order polynomial Pd(ξ) =∑d
i=0 aiξ

i are determined by the following linear system

(D.3)

⎛
⎜⎜⎜⎜⎝

m0 m1 . . . md

m1 m2 . . . md+1

. . . . . . . . . . . .
md−1 md . . . m2d−1

0 0 . . . 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a0
a1
. . .
ad−1

ad

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
. . .
0
1

⎞
⎟⎟⎟⎟⎠ ,

where the (d+ 1) by (d+ 1) Vandermonde matrix needs to be inverted.



A1216 MENGDI ZHENG AND GEORGE EM KARNIADAKIS

REFERENCES

[1] G. Arfken, Mathematical Methods for Physicists, 3rd ed., Academic Press, Orlando, FL, 1985.
[2] S. Asmussen and J. Rośınski, Approximations of small jumps of Lévy processes with a view
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