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Abstract. Using Wiener chaos expansion (WCE), we develop numerical algorithms for solving
second-order linear parabolic stochastic partial differential equations (SPDEs). We propose a deter-
ministic WCE-based algorithm for computing moments of the SPDE solutions without any use of the
Monte Carlo technique. We also compare the proposed deterministic algorithm with two other nu-
merical methods based on the Monte Carlo technique and demonstrate that the new method is more

efficient for highly accurate solutions. Numerical tests verify that the scheme is of mean-square order
N/2
o( L) for diffusion and for diffusion-reaction SPDEs with constant or variable coefficients,

V(N+I)!

where A is the time step, and N is the Wiener chaos order.
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1. Introduction. In this paper we develop a new numerical method, based on
nonlinear filtering ideas and spectral expansions, for advection-diffusion-reaction equa-
tions perturbed by random fluctuations, which form a broad class of second-order
linear parabolic stochastic differential equations (SPDEs). The standard approach to
constructing SPDE solvers starts with a space discretization of an SPDE, for which
spectral methods (see, e.g., [4, 10, 14]), finite element methods (see, e.g., [1, 8, 32])
or spatial finite differences (see, e.g., [1, 11, 30, 33]) can be used. The result of such
a space discretization is a large system of ordinary stochastic differential equations
(SDEs) which requires time discretization to complete a numerical algorithm. In
[5, 6] an SPDE is first discretized in time and then a finite element or finite difference
method can be applied to this semidiscretization. Other numerical approaches include
those making use of splitting techniques [2, 17, 12], quantization [9], or an approach
based on the averaging-over-characteristic formula [26, 27]. In [22, 19] numerical algo-
rithms based on the Wiener chaos expansion (WCE) were introduced for solving the
nonlinear filtering problem for hidden Markov models. Since then the WCE-based
numerical methods have been successfully developed in a number of directions (see,
e.g., [13, 31]).

In computing moments of SPDE solutions, the existing approaches to solving
SPDEs are usually complemented by the Monte Carlo technique. Consequently, in
these approaches numerical approximations of SPDE moments have two errors: nu-
merical integration error and Monte Carlo (statistical) error. To reach a high accuracy,
we have to run a very large number of independent simulations of the SPDE to reduce
the Monte Carlo error. Instead, here we exploit WCE numerical methods to construct
a deterministic algorithm for computing moments of the SPDE solutions without any
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use of the Monte Carlo technique.

The rest of the paper is organized as follows. In section 2 we introduce the
linear SPDE considered in the paper and recall the definition of its Wiener chaos
solution. In section 3 we revisit the method employed in [19] and apply it to a more
general linear SPDE than the one treated in [19]. Based on this, the algorithm for
computing moments of the SPDE solutions is introduced in section 4. To demonstrate
the effectiveness of the proposed algorithm, we perform a number of numerical tests.
In section 5 we test the algorithm on two one-dimensional SPDEs and confirm its
theoretical order of convergence. In section 6 we apply this algorithm to the passive
scalar equation in the periodic case in two dimensions. In both section 5 and section 6
we also compare the WCE-based algorithm with algorithms exploiting the Monte
Carlo technique and demonstrate that while the proposed WCE-based algorithm is
slower than Monte Carlo-type methods in getting results of low accuracy, in reaching
higher accuracy the WCE-based algorithm can be more efficient. A summary and
discussion on possible extensions are given in section 7.

2. WCE of the SPDE solution. Let (£, F, P) be a complete probability space,
Fi, 0 <t < T be a filtration satisfying the usual hypotheses, and (w(t),F;) =
({wg (t), k > 1}, F) be a system of one-dimensional independent standard Wiener
processes. Let D be an open domain in R%. Consider the following SPDE written in
the form of Ito:

(2.1)
du(t,z) = Lu(t,z) + f(z) + Y [Myu(t, ) + gu(2)] dwi(t), (t,z) € (0,T] x D,

k>1

u(0,z)=uo(z), =z €D,
where

d d
Lu(t,z) = Z aij (x) D;Dju(t, z) + Z bi(z)Dyu(t, ) + ¢ (z) u(t, z),
(22) 1,7=1 =1
d
Myu(t, ) = b (z)Diu(t, z) + h* () u(t, ),

and D; := 0,,. We assume that D is either bounded with a regular boundary or that
D = R%. In the former case we will consider periodic boundary conditions and in the
latter the Cauchy problem. We also assume that the coefficients of operators £ and
M are uniformly bounded and /3—% > w>1 MMy is nonnegative definite. When the
coefficients of £ and M are sufficiently smooth, existence and uniqueness results for
the solution of (2.1)—(2.2) are available (see, e.g., [28]) and under weaker assumptions
(see, e.g., [23, 21]).

Now let us recall (see details in [23, 20, 21]) the definition of a Wiener chaos
solution to the linear SPDE (2.1)-(2.2). Denote by J the set of multi-indices o =
(Qg,1)ki>1 of finite length |af = Y00 ) auy, e,

J ={a=(ars, k,1>1), ar; €{0,1,2,...}, |a| <oo}.

Here k denotes the number of Wiener processes and [ the number of Gaussian random
variables approximating each Wiener process, as will be shown shortly. We represent
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the solution of (2.1)-(2.2) as
1
(2.3) u(t, x) = ;j ﬁ%(t, )€,

where {£,} is a complete orthonormal system (CONS) in L?(Q, F;, P), a! = [,
(a1!), and ¢, satisfies the following system of equations (the propagator):

W = Ecpa(s, JJ) + f(x)]-{\a|:0}

+3 " apmu(s) [Mia- (5, 2) + gr(@) 1=}, 0<s<t z€D,
k,l

(2.4)

9a(0,7) = uo(z)1fja|=0}, = €D,

where o~ (I, k) is the multi-index with components

_ _J max(0,a;; —1) ifi=1landj=F,
(2.5) (Ot (l, k))i,j - { Qi otherwise.

The random variables &, in (2.3) are constructed according to the Cameron—Martin
theorem [3]:

(2.6) & =11 (711%,[(@',1)) ,aed,

P Q. 1-

where {m;} = {my(s)},5, is a CONS in L*([0,]), &, = fot my(s) dwg(s), and H, is
the nth Hermite polynomial:

2,0 d” 2
2.7 H,(z) = (—1)"e* /2 ——¢27/2,
(2.7) (z) = (=1)" T ©

The representation (2.3)—(2.7) is called a WCE of the SPDE solution. It is clear
that a truncation of the WCE (2.3) presents a possibility for constructing numerical
methods for SPDEs. This is considered in the next section.

3. Multistage WCE method. In addition to the multi-index length |a| =
Zﬁzl a1, we define the order of multi-index

a:d(a) =max{l >1: ay; > 0 for some k > 1}
and the truncated set of multi-indices
INn=1{ae€J: o <N, d(a) <n}.

Here N is the highest Hermite polynomial order and n is the maximum number of
Gaussian random variables for each Wiener process. Using (2.3), we introduce the
truncated Wiener chaos solution

1
(3.1) un . (t,x) = ae%; ﬁ%(t, 2)Eq.

We choose the basis {m(s)},5, as

(3.2) mi(s) =
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See a discussion on selection of basis in [19].

The truncated expansion (3.1) together with (2.4), (2.6), and (3.2) gives us a
constructive approximation of the solution to (2.1), where implementation requires
that we numerically solve the propagator (2.4).

It is proved in [19, Theorem 2.2] that when b¥(t,x) = 0, ¢ = 0, g = 0 (reaction-
diffusion equation), and the number of noises is finite there is a constant C' > 0 such
that for any ¢ € (0,7

N+1 3
(33 B ot = )l < 06 ({5 + )

Our preliminary analysis shows that in the general case of (2.1), the error estimate
(3.3) is expected to be

N+1 2
(3.4) E|lunn(t,-) —ult,)][7, < CeCt (% + %) :
A rigorous proof of such a result will appear elsewhere.

It follows from the error estimates (3.3) and (3.4) that the error of the approxi-
mation un (t,-) grows exponentially in time ¢, which severely limits its practical use.
To overcome this difficulty, it was proposed in [19] to introduce a time discretization
with step A > 0 and view (3.1), (2.4), (2.6), (3.2) as the one-step approximation of
the SPDE solution based on which an effective numerical method applicable to longer
time intervals was constructed.

To this end, let us introduce the multistep basis for the WCE and its correspond-
ing propagator. Let 0 =ty < t; < -+ < txg =T be a uniform partition of the time
interval [0, 7] with time step size A; see Figure 3.1. Let {m,(j)} = {m,(j)(s)}kzl be
the following CONS in L2([t;—1,t]):

(3.5) ml(i) =my(s —ti—1), tii1 <s<ty,

ml(s):%, mﬂs)z@cos(@), [>2, 0<s<A,
mi(s) =0, 1>1, s¢]0,A]

Define the random variables fc(,f), i=1,...,K, as

(2) © Hak l( I(CZ%)
(36) é-oz = H W 5 o€ J,

where 5,(;3 = f:_l ml(i)(s) dwy(s), and H, are Hermite polynomials (2.7).
Let

(3.7) ua, N (0,2) = uo(z),

and by induction for i =1,..., K let

1 . .
(3.8) up, N (ti, ©) = Z ﬁ@g)(A@)fS)a

a€JNn
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ot - -- LA 2A iAo T=KA
e - b e |

of fline online

——

Fic. 3.1. [llustration of the idea of multistage WCE. The dotted line denotes the “offline”
computation, where we solve the propagator up to time A. The dashed line implies that one solves
only the solution on certain time levels instead of on the entire time interval.

where wg) (A, x) solves the system

(1)
960 07) _ o9 (5,) + @)1 1010y

+ 3 awamf” () [Mrpl) 4y (5,2) + gu(@) Loy |, s € 0,4,
k,l

(3.9)

eD(0,2) = ua,nnlti-1, )1 {ja|=0}-

Thus, (3.7)-(3.9) together with (3.5) and (3.6) gives us a recursive method (called
the RWCE method) for solving the SPDE (2.1), where implementation requires us to
numerically solve the propagator (3.9) at every time step.

Based on the one-step error (3.3), the following global error estimate for the
RWCE method is proved in [19, Theorem 2.4] (the case of b¥(t,2) =0, ¢ =0, g = 0,
and a finite number of noises):

CAN A2\
1 E altiy ) —ults, )72 < cr ((€A) | A7 =1,..,K
310)  Blua o) —u(t)l < 0T (4 00) L i= 1k

for some C' > 0 independent of A, N, and n; i.e., this method is of global mean-square
order O( il

V(N+1)! *

case of (2.1) (advection-diffusion-reaction equations) the error estimate for the RWCE
method will have the form

%). Moreover, based on (3.4), one can prove that in the general

CAN A
' ) — ()2, < CeCT 7( — i=1,...,K;
(3 11) EHU‘A,N,TL(tZa ) U(t“ )”L - C@ (N+ 1)| + n ) 1 17 7K7

i.e., this method is of mean-square order O( \/% + %)

As we already mentioned, the RWCE method requires us to solve the propagator
(3.9) at every time step, which is computationally rather expensive. To reduce the
cost, we introduce a modification of this method following [19]. The idea is to expand
the initial condition ug(x) in a basis {e,, }, present ua n n(ti—1, ) as ua nn(tic1,x) =
Y m Cmem (), and note that v (A, z;ua N (ti—1,7)) = Do, CmPa(D, x5 epn,), Where
Yal(s,x;¢) is the solution of the propagator (3.9) with the initial condition
o(x).

The idea is illustrated in Figure 3.1 with the help of a sketch. We can first compute
the propagator (3.12) (see below) on (0,A] and obtain a problem-dependent basis
do,l,m (3.13). This step is called “offline” as in [19]. Thus, one recursively computes
the solution “online” by (3.14) and (3.15) only at time ¢A (i = 2,..., K) using the
obtained basis ¢a,1,m. Specifically, we proceed as follows. Let {e,,} = {em(x)},,~; be
a CONS in L?(D) with boundary conditions satisfied and (-, -) be the inner product
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in that space. Let ¢, (s, x; ¢) solve the following propagator:

W = Loa(5,2;0) + (@)1 {jaj—0)

+Zak,lml(3) [Mk%’oﬁ(l,k) (s,2;0) + gk(x)l{m\:lﬂ , SE (OvA]a
k,l

(3.12)

08(0,2) = () 1{ja)=0}
where m;(s) are as in (3.2). Define
(3.13) Gaim = (Pa(D, 5 @) em), Lm2>1,
and then find by induction the coefficients

(3.14) Ui (0; N, n) := (uo, €m),

) 1 ) i .
wm(lvN7n) = Z Zﬁwl(l_l;Nan)qa7l,m€(g¢)7 121,...,K.

a€INn

It is proved in [19, Theorem 2.5] that

(3.15) ua Nt ®) = (s Non)em (), i=0,...,K, P-as.

We refer to the numerical method (3.15), (3.12)-(3.14) together with (3.5)—(3.6) as
the multistage WCE method for the SPDE (2.1).

In practice, if (2.1) has an infinite number of Wiener processes, we truncate them
to a finite number r > 1 of noises. We introduce the correspondingly truncated set
JIN,n,r SO that

INnr={ae T : |a| <N, dp(a) <n},

where d,(a) = max{l > 1:ap; >0 for some 1 <k <r}.

ALGORITHM 1. Choose a truncation of the number of noises v > 1 and the
algorithm’s parameters: a CONS {ey, () }m>1 and its truncation {em,(x)}M_,; a time
step A; N and n which together with r determine the size of the multi-index set
jN,n,r-

Step 1. For each m = 1,..., M, solve the propagator (3.12) for o € Jnnr on the
time interval [0, A] with the initial condition e, (x) and denote the obtained solution
as o (A, z56m), @ € Inpr, m = 1,...,M. Note in this step that we need to also
choose a time step size 0t to solve the equations in the propagator numerically.

Step 2. Ewvaluate ¥, (0; N,n, M) = (uo,em), m = 1,..., M, where ug(x) is the
initial condition for (2.1), and qa,1m = (@a(A,e1),em (), L m=1,..., M.

Step 3. On the ith time step (at time t = iA), generate the Gaussian random

variables f&i), & € INn,r, according to (3.6), compute the coefficients

M
1 .
wm(z7N7n7M): Z Z\/——wl(i_1;N7naM)qa,l7m§((;)a m:]-a"'aMa

|
a€Inmr =1 VY
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and obtain the approzimate solution of (2.1)

M
UN y (b 2) = D (i3 N, n, M)ep, ().

m=1

Algorithm 1 coincides with the algorithm proposed in [19] for (2.1) in the case
of b¥(t,z) = 0, ¢ = 0, g = 0, and a finite number of noises but generalizes it to a
wider class of linear SPDEs of the form (2.1). In particular, the algorithm from [19]
was applied to the nonlinear filtering problem for hidden Markov models in the case
of independent noises in signal and observation, while Algorithm 1 is also applicable
when noises in signal and observation are dependent.

Algorithm 1 allows us to simulate mean-square approximations of the solution to
the SPDE (2.1). It can also be used together with the Monte Carlo technique for
computing expectations of functionals of the solution to (2.1). In the next section we
propose an algorithm based on Algorithm 1, which allows us to compute moments of
the solution to (2.1) without using the Monte Carlo technique.

Remark 3.1. We note that the cost of simulation of the random field u(t;, x) by
Algorithm 1 over K time steps is proportional to K M 2%

4. Algorithm for computing moments. Implementation of Algorithm 1 re-
quires the generation of the random variables &(,f) (see (3.6)). Then, for computing
moments of the solution of the SPDE problem (2.1), we also need to make use of the
Monte Carlo technique. As is well known, Monte Carlo methods have a low rate of
convergence. In this section we present a deterministic algorithm (Algorithm 2) for
computing moments, i.e., an algorithm which does not require any random numbers
and does not have a statistical error. In sections 5 and 6 we compare Algorithm 2
with some Monte Carlo-type methods and demonstrate that Algorithm 2 can be more
computationally efficient when higher accuracy is required.

First, it is not difficult to see that the mean solution Eu(t,x) is equal to the
solution ¢ (t, ) of the propagator (3.12) with o = (0):

Eu(t,r) = ¢ (t, ).

Thus evaluating the mean Fu(t,z) is reduced to numerical solution of the linear
deterministic PDE for o) (t, ).

We limit ourselves here to presenting an algorithm for computing the second
moment of the solution, Fu?(¢,z). Other moments of the solution u(t,z) can be
considered analogously.

According to Algorithm 1, we approximate the solution u(t;, ) of (2.1) by uI‘A/{ Non
(t;, x) as follows:

U (0; Ny, M) = (ug, €,), m=1,..., M,

M
1 )
Ym(tis Non, M) = ) Z7ﬂ%mNmM%m$%m=th
a€TN i 1=1 VY
M
uN yon(tin ) = > m(tis Non, M)ep (), i=1,... K,

m=1

where ¢q1m are from (3.13) and gﬁf) are from (3.6). Then, we can evaluate the
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covariance matrices

(41) le(O,N,TL,M) = 1/11(0,N,n,M)1/)m(O,N,n,M), lvm: 15"'7Ma
le(tZ7N7naM) = E[¢l(tZ7N7n7M)wm.(t’qunaM)]

M
1
=3 Qrltiii;Nyn, M) > 0o 1o k.m;

k=1 a€IN,n,r
Im=1,....M, i=1,..., K,

and, consequently, the second moment of the approximate solution

M
(4.2) Blul v, (tn2)]? = Y Qua(tis Non, M)ey(@)em(x), i=1,...,K.

I,m=1

We note that implementation of (4.1)—(4.2) does not require generation of the random
variables §§f ). Hence we have constructed a deterministic algorithm for computing the
second moments of the solution to the SPDE (2.1), which we formulate below.

ALGORITHM 2. Choose a truncation of the number of noises r > 1 in (2.1) and
the algorithm’s parameters: a CONS {em(x)}m>1 and its truncation {e,(x)}M_; a
time step A; N and n which together with r determine the size of the multi-index set
jN,n,r-

Step 1. For each m = 1,..., M, solve the propagator (3.12) for o € Jnnr on the
time interval [0, A] with the initial condition ¢(x) = e, (x) and denote the obtained
solution as o (A, x;€m), @ € INmr, m=1,..., M. Also, choose a time step size 6t
to solve the equations in the propagator numerically.

Step 2. Evaluate ¥,,(0; N,n, M) = (uo,em), m = 1,..., M, where up(x) is the
initial condition for (2.1), and qa,1m = (0a(A, - e1),em (), L m=1,..., M.

Step 3. Recursively compute the covariance matrices Qum (t;; N,n, M) according
to (4.1), and obtain the second moment E[ul (t;,x)]* of the approzimate solution

0 (2.1) by (4.2). o

We again emphasize that Algorithm 2 for computing moments does not have a
statistical error.

Let us discuss the error of Algorithm 2. One can show (see, e.g., [19]) that due to
the orthogonality of the random variables gﬁf ) in the sense that E{&i)féj ) = 0 unless
1 =j and o = f3, the following equality holds:

(4.3) Eu?(t,x) — Euiy,(t, @) = Elu(t,z) — un n(t,2)].

Hence the error estimates for approximation of the second moment E[u(t;,z)]* by
Elua n.n(ti,z)]? is equal to the errors given in (3.10) and (3.11).

We do not discuss here errors arising from noise truncation and from truncation
of the basis {e, () }m>1-

Remark 4.1. Tt is not difficult to show that the computational costs of Steps 1

and 2 of Algorithm 2 are proportional to M? (]]VV!J(Z’;:))!!. In general the computational
cost of Step 3 over K time steps is proportional to I M* (JJ\Y!?:TT))!!. Taking this into ac-

count together with the error estimates (3.10) and (3.11), it is usually computationally
beneficial to choose n = 1 and N = 2 or 1. The main computational cost of Algo-
rithm 2 is due to the total number of basis functions M (in physical space) required
for reaching a satisfactory accuracy. As is well known, for a fixed accuracy the number
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M of basis functions {e,, }}/_, is proportional to C?, where C' depends on a choice of
the basis and on the problem. If the variance of u?(t, ;) is relatively large and the
problem considered does not require a very large number of basis functions M, then
one expects Algorithm 2 to be computationally more efficient in evaluating second
moments than the combination of Algorithm 1 with the Monte Carlo technique.

Algorithm 2’s efficiency can often be improved by choosing an appropriate basis
{em} so that the majority of functions ¢a;m are identically zero or negligible and
hence can be dropped from computing the covariance matrix {Q, (t;; N, M )}le:l,
significantly decreasing the computational cost of Step 3. For instance, for the periodic
passive scalar equation considered in section 6 we choose the Fourier basis {e,,}. In
this case, the number of zero ¢q.1m is proportional just to M (the total number of
{a,1,m is proportional to M?) and, consequently, the computational cost of Step 3 (and
hence of the whole Algorithm 2) becomes proportional to M? instead of the original
M*. Moreover, computation of the covariance matrix according to (4.1) can be done
in parallel. Clearly, the use of reduced-order methods with offline/online strategies
[29] can greatly reduce the value of M and hence will make the proposed method very
efficient.

Remark 4.2. It is more expensive to compute higher-order moments by a de-
terministic algorithm analogous to Algorithm 2. Since second moments give us such
important, from the physical point of view, characteristics as energy and correlation
functions, Algorithm 2 can be a competitive alternative to Monte Carlo-type methods
in practical situations.

5. Numerical tests in one dimension. We start (section 5.1) with a descrip-
tion of two one-dimensional test problems used in the numerical tests. Then, for
clarity of exposition, we illustrate application of Algorithm 2 to these problems (sec-
tion 5.2). We present results of numerical tests of Algorithm 2 in section 5.3 and
its comparison with some Monte Carlo-type algorithms in section 5.4. In the next
section (section 6) we also perform numerical tests with a two-dimensional passive
scalar equation.

5.1. Test problems. We consider the following two model problems. The first
one is the stochastic advection-diffusion equation with periodic boundary conditions
written in the Stratonovich form as

(5.1) du(t, ) = euyy(t, x)dt + oug(t,x) odw(t), t >0, x € (0,2m),

u(0, z) = sin(x)
or in the It form as
du(t, ) = augy(t, ) dt + oug(t, ) dw(t), u(0,z) = sin(z).

Here w(t) is a standard one-dimensional Wiener process, o > 0, € > 0 are constants,
and a = €+ 02/2. The solution of (5.1) is

(5.2) u(t,z) = e “sin(x + ow(t)),

and its first and second moments are

1 1
Fu(t,z) = e sin(z), FEu?(t,z) =e > (5 - 56_202t cos(23:)> .

We note that for e = 0 (5.1) becomes degenerate.
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The second model problem is the following 1t6 reaction-diffusion equation with
periodic boundary conditions:

(5.3) du(t, ) = aug,(t,x) dt + ou(t,z) dw(t), t >0, x € (0,2mw),
u(0, z) = sin(x),

where o > 0 and a > 0 are constants. Its solution is

2
(5.4) ult, ) = exp (- <a + %) t+ mu(t)) sin(z),
and its first and second moments are

Eu(t,z) = e “sin(z), Eu’(t,z) = exp (—(2a — 0?)t) sin®(z).

In sections 5.3 and 5.4 we will test Algorithm 2 by evaluating the second moments
Eu?(t,x) of the solutions to (5.1) and (5.3).

5.2. Application of WCE algorithms to the model problem. The prob-
lems (5.1) and (5.3) are simpler than the general linear SPDE (2.1) we have considered
in the paper, and, consequently, Algorithm 2 applied to them takes a simpler form
(see Algorithm 3 below).

We note that when an SPDE has a single Wiener process only, the multi-index
a takes the form « = (aq, a9, ...), where «; are nonnegative integers. For instance,
if |o| =0 (i.e., a = (0,0,. )), then the corresponding &, = 1 (cf. (2.6)). If |a] = 1,
then the multi-index o = (0, . 0 1,0,. ) With o; = 1 and the other ay, = 0, and
the corresponding &, = Hy (&)= fo m;(s) dw(s). If |a| = 2, then the multi-index
is either of the type a = (0,. 0,1,0 0,1,0,...) with a; = a; = 1 and the
other aj, = 0, and consequently fa =H, (fi)Hl (&) = [o mi(s) dw(s) fg m;(s) dw(s);

0
or a = (0,. 0,2,0 ) With ozl = 2 and the other ay = 0, and consequently
§a = H2(&) /\/— fo m;(s) dw(s))? —1]; and so on.

The model problems (5.1) and (5 3) have a single Wiener process, and they possess
the following interesting feature. We observe that their solutions (5.2) and (5.4) have
the form u(t,z) = f(t,z,w(t)), where f(¢,x,y) is a smooth function. Consequently,
the solutions are expandable in the basis consisting just of &, = Hy(w(t)/v1)/Vk! =
Hi(&)/VE, a = (k,0,...,0), k=0,1,...; i.e., we have

(5.5) Z%‘tx —Z Palt fa—zwké s

acJ N=0a€eJN1

where 1, = &, with a = (k,0,...,0), k=0,1,... . Hence

6 _ . _ Y @k(tvf)
(5.6) uNJ(t,x)—.uN(t,x)—kZ:O N

which corresponds to setting n = 1 in (3.1). It is not difficult to show (see also the
discussion on error estimates after Algorithm 2 in section 4) that applying Algorithm 2
to the model problems (5.1) and (5.3) is more accurate than in general cases of (2.1)
(cf. (3.10) and (3.11) and also (4.3)):

o O

(5.7) [ Eu?(t,-) — Buj n(t )] . < N1
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for all sufficiently small A > 0 and a constant C' > 0 independent of A and N (as
before, here we neglected errors arising from truncation of the basis {e;,}).

For the problems (5.1) and (5.3), the propagator (3.12) takes the form (recall that
here the multi-index a degenerates to o = (k,0,...,0), k=0,1,...)

(58) at(PO = aagr(p(h 900(07$; (b) = (b(x)a

1
Oror = ad2, o + ——0kdyppr_1, 0,z;0)=0, k>0,
tPk Pk \/Z Prk—1 Sﬁk( )

and

(59) 8“100 = aagw(p()a @0(05 xZ3 QZS) = QZS(ZI;),

1
5,590;.3 = aagm@k + \/—ng@kfla QOk(O,iC, 0) = 07 k> 07

respectively. We solve these propagators numerically using the Fourier collocation
method with M nodes in physical space and the Crank—Nicolson time discretization
with step 6t in time. Denote by L,,(x), m = 1,..., M, the mth Lagrangian trigono-
metric polynomials using M Fourier collocation nodes; i.e., L,,(z) are Mth-order
trigonometric polynomials satisfying L,,(z;) = 6, and x; = 2M’T(l —1),l=1,...,M.
Now, for completeness, we formulate the realization of Algorithm 2 in the case of the
model problems.

ALGORITHM 3. For given values of the model parameters a and o, choose the
algorithm parameters: a number of Fourier collocation nodes M, a time step dt for
solving the propagator (5.8) (or (5.9)), a time step A, and the number of Hermite
polynomials N.

Step 1. Solve the propagator (5.8) (or (5.9)) on the time interval [0, A] with the
initial condition ¢(x) = Li(x) using the Fourier collocation method with M nodes
in physical space and the Crank—Nicolson scheme with step dt in time, and denote
the obtained numerical approzimation of wr(A, zi; Ly,) as gog/[’ét(A,gcl;Lm), l,m =
1,....,.M, k=1,...,N.

Step 2. Recursively compute the covariance matrices

Qun(ti; N, M) = Elup 3 (t, a)un §f (tiswm)] at t;=iA, i=0,..., K,
of the approzimate solution to (5.1) (or (5.3)):

Qim(0; N, M) = up(z))uo(xm), ,m=1,..., M,

N M M 1
Qun(tss N, M) = 3373 1 Qar(ticrs N, M)

where ug(x) is the initial condition of (5.1) (or (5.3)). In particular, we obtain the
second moment of the approzimate solution to (5.1) (or (5.3)):

E[u%’]‘i,t(ti,xj)]z = ij(ti;N,M), ]: 1,...,M, 7 = 1,...,K.
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We note that Algorithm 3 has four errors: (1) an error due to time discretization
of the SPDE, which is controlled by A; (2) the truncation error of the one-step WCE,
which is controlled by N; (3) an error due to the truncation of the spatial basis {e;, },
which is controlled by M; and (4) the numerical integration error in solving the propa-
gator. The last one, in its turn, consists of the error due to space discretization, which
is controlled by M, and of the error due to time discretization, which is controlled by
ot.

Remark 5.1. To approximate the solution of (5.1) (or (5.3)), one can use the
truncated WCE uy (¢, z) from (5.6) and, in particular, evaluate the second moment
Eu?(t,r) as

N T A
(5.10) Bu(t,a) ~ Budy(to) = Y o Ay e

where ¢o(t,2) = @o(t, z;up(x)) and @i (t,z) = ¢i(t,2;0), & > 0, are solutions of
the propagator (5.8) (or (5.9)) and @24’5t(t,x) are their numerical approximations
obtained, e.g., using the Fourier collocation method with M nodes in physical space
and the Crank—Nicolson scheme with step 0t in time. The approximation (5.10) can
be viewed as a one-step approximation corresponding to Algorithm 3, i.e., the first
step of Algorithm 3 with A = ¢, and its error is estimated as

2 2 < (oCt (cHN+t
HEU (tﬂ)_EuN(t’)||L2 706 m
We see that this error grows exponentially with ¢, which was confirmed by our nu-
merical tests with (5.1) (not presented here). To reach a satisfactory accuracy of the
approximation (5.10) for a fixed ¢, one has to take a sufficiently large N, which is
computationally expensive (see also Remark 4.1) even in the case of moderate values
of t. In contrast, we demonstrate (see next section) that the error of Algorithm 3
grows linearly with time and it is relatively small even for N = 1.

5.3. Numerical results. In this section we present some results of our numer-
ical tests of Algorithm 3 on the two model problems (5.1) and (5.3).

In approximating the propagators (5.8) and (5.9) we choose a sufficiently large
number of Fourier collocation nodes M and a sufficiently small time step dt so that
errors of numerical solutions to the propagators have a negligible influence on the
overall accuracy of Algorithm 3 in our simulations. In all the numerical tests it was
sufficient to take M = 20; this choice of M was tested by running control tests with
M = 80.

We measure numerical errors using the norms

palt) = (% S (E [ttt a)] Eu2<t,xm>>2>

1/2

m=1
and
M, 5t 2 2
Poo(t) = 1SII71na§XM E {uA”N (t,xm)} — BEu®(t, zm)

The results of our tests on the model problem (5.1) in the degenerate case (i.e.,
e = 0) and in the nondegenerate case (i.e., € > 0) are presented in Tables 5.1 and 5.2,
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respectively. Table 5.3 corresponds to the tests with the second model problem (5.3).
Numerical tests with values of the parameters other than those used for Tables 5.1-5.3
were also performed, and they gave similar results.

Analyzing the results in Tables 5.1, 5.2, and 5.3, we observe the convergence
order of A" for a fixed N in all the tests, which confirms our theoretical prediction
(5.7). We also run other cases (not presented here) to confirm the conclusion from
section 5.2 that the number n of random variables & used per step does not influence
the accuracy of Algorithm 2 in the case of the model problems (5.1) and (5.3).

In Figure 5.1 we demonstrate dependence of the relative numerical error

p2(t)

T t —
P2 = 15

on integration time. These results were obtained in the degenerate case of the problem
(5.1), but similar behavior of errors was observed in our tests with other parameters
as well. One can conclude from Figure 5.1 that (after an initial fast growth) the error

TABLE 5.1
Model (5.1)—performance of Algorithm 3. The parameters of the model (5.1) are 0 =1, e =0,
and the time is t = 10. In Algorithm 3 we take M = 20.

N A ot p2(10) Poo(10)

1 0.1 1x1073 4.69 x 1071 1.87 x 101
0.01 1x 104 6.07 x 10~2 2.42 x 1072
0.001 1x 105 6.25 x 1073 2.49 x 10~3

2 0.1 1x 1073 1.92 x 102 7.67 x 1073
0.01 1x 104 2.07 x 10~4 8.27 x 107°
0.001 1x107° 2.09 x 10— 8.33 x 107

3 0.1 1x 1073 4.82 x 1074 1.99 x 104
0.01 1x10~4 5.16 x 107 2.06 x 107
0.001 1x 105 3.37 x 10~10 1.81 x 10—10

4 01 1x10-3 9.36 x 10—6 3.73 x 10~6
0.01 1x 105 9.35 x 10—10 4.17 x 10~10

TABLE 5.2

Model (5.1)—performance of Algorithm 3. The parameters of the model (5.1) are o = 1,
e = 0.01, and the time is t = 10. In Algorithm 3 we take M = 20.

N A 5t p2(10) poo(10)

1 01 1x10-3 3.84 x 10~1 1.53 x 10~ 1
0.01 1x10~4 4.97 x 10~2 1.98 x 10—2
0.001 1x10~% 5.11 x 10—3 2.04 x 10—3

2 0.1 1x10-3 1.58 x 10—2 6.28 x 10—3
0.01 1x 104 1.70 x 10—% 6.77 x 1075
0.001 1x10% 1.72 x 106 6.88 x 107

3 0.1 1x 1073 3.95 x 1074 1.57 x 104
0.01 1x 104 4.22 x 1077 1.68 x 107
0.001 1x107° 3.65 x 1010 2.01 x 10~10

4 01 1x 1073 7.67 x 1076 3.06 x 10~6
0.01 1x107° 8.39 x 10~10 3.90 x 10~10
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TABLE 5.3
Model (5.3)—performance of Algorithm 3. The parameters of the model (5.3) are o = 1,
a = 0.5, and the time is t = 10. In Algorithm 3 we take M = 20.

N A ot p2(10) Poo(10)

1 01 1x 1073 5.75 x 10~ 1 3.74 x 1071
0.01 1x 104 7.44 x 1072 4.85 x 1072
0.001 1x10% 7.65 x 1073 4.98 x 1073

2 0.1 1x 1073 2.36 x 102 1.53 x 102
0.01 1x 104 2.54 x 104 1.65 x 104
0.001 1x 1074 2.58 x 10~6 1.68 x 106

3 0.1 1x 1073 5.90 x 104 3.85 x 1074
0.01 1x10~4 6.32 x 107 412 x 1077

AAAAA
““““““
“““““““

10X M— oot 3

o
° uuuﬂ“uuu
=

fo g®
-]

ool W * N=1,A=0.1 1
o B N=2, A=0.1
oo o N=1,A=0.01
0ol 6 N=2,4=0.01 ]
10’7 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

FiG. 5.1. Dependence of the relative numerical error ph(t) on integration time. Model (5.1) is
simulated by Algorithm 3 with M = 20 and 6t = A/100 and various A and N. The parameters of
(5.1) are 0 =1 and e = 0.

grows linearly with integration time. This is a remarkable feature of the proposed
WCE-based algorithm since it implies that the algorithm can be used for long time
integration of SPDEs.

5.4. Comparison of the WCE algorithm and Monte Carlo-type algo-
rithms. As discussed in the introduction, there are other approaches to solving
SPDESs, which are usually complemented by the Monte Carlo technique when one
is interested in computing moments of SPDE solutions. In this section, using the
problem (5.1), we compare the performances of Algorithm 3 and two Monte Carlo-
type algorithms, one of which is based on the method of characteristics [26] and
another on the Fourier transform of the linear SPDE with subsequent simulation of
SDEs and application of the Monte Carlo technique.

The solution of (5.1) with ¢ = 0 (the degenerate case) can be represented using
the method of characteristics [28]:

(5.11) u(t, x) = sin(X¢ »(0)),
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where X; ,(s), 0 < s <t, is the solution of the system of backward characteristics
(_

(5.12) dXi () = odw(s), Xiz(t)=x.

The notation %(s) means backward It6 integral (see, e.g., [28]). It follows from
(5.12) that X, . (0) has the same probability distribution as x + o+/#¢, where ( is a
standard Gaussian random variable (i.e., ¢ ~ N(0,1)). Since we are interested only
in computing statistical moments, it is assumed, without loss of generality, that

(5.13) X 2(0) =z + oV,

Then we can estimate the second moment ma(t, z) := Eu?(t, r) as
1 L

(5.14) ma(t,x) = ma(t,x) = — Z sin?(x 4 ovt¢W),
L=

where (W, 1 =1,..., L, are independent and identically distributed (ii.d.) standard
Gaussian random variables. The estimate mso for mso is unbiased, and, hence, the
numerical procedure for finding mo based on (5.14) has only the Monte Carlo (i.e.,
statistical) error which, as usual, can be quantified via half of the length of the 95%
confidence interval:

Var(sin?(z o\t
N )

Table 5.4 gives the statistical error for ma(t, z) from (5.14) (recall that there is
no space or time discretization error in this algorithm), which is computed as

L~ b sint(z; + oVICD) — [mo(t, z;))
(5.15) Z'mj?lx \/LZZ:l (j+\/%/gg ) — [a(t, x5)] |

where the set of ; is the same as the one used for producing the results of Table 5.5
by Algorithm 3 and ¢ are as in (5.14). All the tests were run using MATLAB
R2007b on a Macintosh desktop computer with Intel Xeon CPU E5462 (quad-core,
2.80 GHz). Every effort was made to program and execute the different algorithms as
much as possible in an identical way. The cost of simulation due to (5.14) is directly
proportional to L. The slower time increase for smaller L in Table 5.4 is due to
inclusion of the initialization time of the computer program in the time measurement.

TABLE 5.4
Model (5.1)—performance of the method (5.14). The parameters of the model (5.1) are o =1,
e =0, and the time is t = 10. The statistical error is computed according to (5.15).

L Statistical error CPU time (sec.)
102 8.87 x 1072 6 x 1073
104 7.40 x 1073 6.7 x 102
106 7.09 x 10~4 7.4 x 100
108 7.07 x 1075 7.4 x 102
1010 7.07 x 1076 7.3 x 10*
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TABLE 5.5
Model (5.1)—performance of Algorithm 3. The parameters of the model (5.1) are 0 =1, e =0,
and the time is t = 10. The parameters of Algorithm 3 are A = 0.1, M = 20, §t = 0.001.

N Poo (10) CPU time (sec.)
1 1.87 x 1071 5.7 x 109
2 7.67 x 1073 8.1 x 10°
3 1.99 x 10~* 1.1 x 10t
4 3.73 x 10~ 1.3 x 10!

In Table 5.5 we repeat some of the results already presented in Table 5.1, which
are now also accompanied by CPU time for comparison.

Comparing the results in Tables 5.4 and 5.5, we conclude that when one sets a
relatively large error tolerance level the estimate rha(t, ) from (5.14) is computation-
ally more efficient than Algorithm 3 but that Algorithm 3 has lower costs in reaching
a higher accuracy (errors of order equal to or smaller than 107%). We note that vari-
ance reduction techniques (see, e.g., [25, 26] and the references therein) can be used
in order to reduce the Monte Carlo error. But the aim here is to give a comparison of
computational costs for the WCE-based algorithm and direct Monte Carlo methods
having in mind that for complex stochastic problems it is usually rather difficult to
reduce variance efficiently.

Let us now use the problem (5.1) with ¢ = 0 for comparison of Algorithm 3
with another approach exploiting the Monte Carlo technique. One can represent the
solution of this periodic problem via the Fourier transform

(5.16) u(t,x) = Z e (t)
kez

with ug(t), t > 0, k € Z, satisfying the system of SDEs

(5.17)

1 1
duy(t) = —k2iazuk(t)dt—l—ikauk(t)dw(t), Reur(0) =0, Imug(0)= 5 (016 — 0—1k) -

Noting that here ug(¢t) = 0 for all |k| # 1 and rewriting (5.16)—(5.17) in the trigono-
metric form, we get

(5.18) u(t,z) = u(t) cosx + u’(t) sinx,
where
(5.19) du®(t) = —%UQUC(t)dt +ou®(t)dw(t), u(0)=0,

dut (1) = —%UQUS(t)dt — ou(t)dw(t), u*(0)= 1.

The system (5.19) is a Hamiltonian system with multiplicative noise (see, e.g., [24,
25]). It is known [24, 25] that symplectic integrators have advantages in compari-
son with usual numerical methods in long time simulations of stochastic Hamiltonian
systems. An example of a symplectic method is the midpoint scheme, which in appli-
cation to (5.19) takes the form

(5.20) @(tr1) = @°(ty) + %(as(tk) T (b)) VA Ger 1, u0(0) =0,

@ () = T (0) = S (@ (1) + @ (i) VA1, w'(0) = 1,
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where (j are i.i.d. standard Gaussian random variables and At > 0 is a time step.
The scheme (5.20) converges with the mean-square order 1/2 and weak order 1 [25].
It is implicit, but (5.20) can be resolved analytically since we are dealing with the
linear system here. One can recognize that (5.19) is a Kubo oscillator. A number of
numerical tests with symplectic and nonsymplectic integrators are done on a Kubo
oscillator in [24, 25].

Using (5.18) and (5.20), we evaluate the second moment of the solution to (5.1)
with e =0 as

(5.21) ma(ty, ) == Eu?(ty, z) = E[a(ty) cosz + @°(t) sin ]
. 1 e s .12
= o (tg, x) = f; [u D (tr) cosz 4+ a>W (ty) sinz|

where %M (t1,), a%®(t;,) are independent realizations of the random variables @°(ty),
u® (tk)

The estimate Mo (ty, ) from (5.21) has two errors: the time discretization error
due to the approximation of (5.19) by (5.20) and the Monte Carlo error. The errors
presented in Table 5.6 are computed as max; s (tg, ;) — EBu?(tx, x;)] and are given
together with the 95% confidence interval.

TABLE 5.6
Model (5.1) —performance of the method (5.21). The parameters of the model (5.1) are o =1,
e =0, and the time is t = 10.

At L Error CPU time (sec.)
0.1 104 8.06 x 1073 £7.09 x 10~3 4.72 x 1071
0.01 104 6.55 x 1074 £ 7.08 x 104 3.90 x 102
0.001 106 8.81 x 1075 £7.07 x 1077 3.81 x 10°

Comparing the results in Tables 5.6 and 5.5, we come to the same conclusion as
in our first comparison test that Algorithm 3 is computationally more efficient than
the Monte Carlo-based algorithms in reaching a higher accuracy.

6. Numerical tests with passive scalar equation. A prominent example of
the stochastic advection-diffusion equation (2.1)-(2.2) is a passive scalar equation,
which is motivated by the study of the turbulent transport problem (see [7, 16, 18]
and the references therein). Here we perform numerical tests on the two-dimensional
(d = 2) passive scalar equation with periodic boundary conditions:

oo d
(6.1) ZZ 2)Dju o dwy(t) =0,
)

u(t, 2! + €, 2%) = u(t, 240 =ultxz), t>0, xc(0,0)?
u(0, ug(z), x€ (0,02,
where o indicates the Stratonovich version of stochastic integration, £ > 0, the initial
condition ug(z) is a periodic function with the period (0,¢)?, and o}, () are divergence-

free periodic functions with the period (0, £)?:

(6.2) divoy = 0.
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In (6.1) we take a combination of such oy (z) so that the corresponding spatial covari-
ance C' is symmetric and stationary: C(z —y) = Y7, Aeox(2)o) (y), where A are
some nonnegative numbers. Namely, we consider

o0

(6.3) Clr—y) = Zx\kC(a:—y;nk,mk),
k=1

where ng, my is a sequence of positive integers, and

C(z —y;n,m) = cos(2m (n[a“l —y] + mlz® - y2]) /0) [ _n;jn _;Lgm ] ,

which can be decomposed as
C(x —y;n,m) = cos(2r[nz +ma?]/¢) { —;Ln } cos(2m [ny' + my?] /O)[ —m n ]
+ sin(27 [na' +ma?] /0) [ —T:n } sin(2r[ny' + my*]/O) [ —-m n].

Hence, {oy(2)}r>1 in (6.1) is an appropriate combination of vector functions of the
form

cos(2n[nz’ + ma?] /() [ ‘T:” } and  sin(2r [na! + ma?] /€) [ ‘T:” } .

We rewrite (6.1) in the It6 form

d co d
(6.4) du(t) + % > Ci;(0)DiDjudt + Y > o} () Diudwy () = 0,

t
u(0,2) = up(z), x € (0,0)>

Below we present results of numerical tests of Algorithm 2 applied to (6.4) and
its comparison with the Monte Carlo-type algorithm based on the method of charac-
teristics from [26]. In the tests we simulated the Lo-norm of the second moment of
the SPDE solution

1/2
(6.5) ||Ev*(T,)||12 = [/[0 » [EW?(T, x)}gdx] :

We considered the particular case of (6.1), (6.3) with ¢ = 2, the initial condition
(6.6) ug(r) = sin(2z') sin(x?),
and two noise terms

6.7)  o1(x) = cos(er + 22) [ - } . oa(2) = sin(a + 22) { ! ] ,

op(x) =0 for k> 2.
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This example satisfies the so-called commutativity condition (see [25, 15]), and
we expect that the error estimate (3.10) will hold in this case, which is confirmed in
the tests (a rigorous numerical analysis will be considered elsewhere).

In Algorithm 2 we solve the propagator (3.12) corresponding to the SPDE (6.4)
using fourth-order explicit Runge-Kutta with step 0t in time and the Fourier spectral
method with M modes in physical space. We noted in Remark 4.1 that in general
the computational cost of Algorithm 2 is proportional to M4 but with an appropriate
choice of basis functions; this cost can be considerably reduced. Indeed, the Fourier
basis is natural for the problem (6.4) and the use of this basis reduces the compu-
tational cost to being proportional to M?2. This significant reduction is based on the
following observation. Since we consider a finite number of noises with periodic oy ()
and ¢, (A, x;e;) to be the solution of the propagator (3.12) with the initial condition
equal to a single basis function e;(x), pa(A,x;e;) is expandable in a finite number
of periodic functions ey (x) and this number does not depend on M. Hence for fixed
a and [ the number of nonzero goim = (pa(A,-;€1), em(-)) is finite. Therefore, the
overall number of nonzero gq,,m is proportional to M instead of M 2. This was tested
and confirmed in our tests. We use the above fact in our computer realization of Al-
gorithm 2 and reduce the computational cost of obtaining a single entry of the matrix
Q1.m from the order of O(M?) to order O(1). Hence, computational costs of Step 3
(and hence all of Algorithm 2) become proportional to M? instead of the original M*.

We do not have an exact solution of the problem (6.1), and hence we need a
reference solution. To this end, the Ls-norm of the second moment of the SPDE
solution at 7" = 1 was computed by Algorithm 2 with parameters N = 2, n = 1,
M = 900 (i.e., 30 basis functions in each space direction), 6t = 1 x 107°, and A =
1 x 10~%, which is equal to 1.57976 (5 d.p.). This result was also verified by the Monte
Carlo-type method described below with At =1 x 1073, M, = 10, and L = 8 x 107,
which gave 1.579777 4 7.6 x 10~°, where =+ reflects the Monte Carlo error only.

For Algorithm 2, we measure the error of computing the Ls-norm of the second
moment of the SPDE solution as follows:

3

2

0
pl7) = 1By e — | [t )|
l

where [[v(-)[[;2 = (X1, v2 (@l 2a2)V2, ol = a2 = (i — 1)¢/M,, i = 1,..., M,,
and Eu?, #(T,-) is the reference solution computed as explained above. The results
demonstrating second-order convergence (see (3.10) and the discussion after Algo-
rithm 2) are given in Table 6.1. We note that we also did some control tests with
ot = 1 x 107° and M = 1600 which showed that the errors presented in this table
are not essentially influenced by the errors caused by the choice of 5t = 1 x 10~ and
cut-off of the basis at M = 900.

TABLE 6.1
Passive scalar equation (6.4) —performance of Algorithm 2. The parameters of Algorithm 2 are
N=2n=1, M =900, 6t =1x 10~*.

A p(1)
0.05 0.1539
0.02 0.0326
0.01 0.0089
0.005  0.0023
0.0025 _ 0.0006
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Let us now describe the Monte Carlo-type algorithm based on the method of char-
acteristics (see further details in [26]) with which here we compare the performance of
Algorithm 2. The solution u(t, x) of (6.1) has the following (conditional) probabilistic
representation (see [28, 18]):

(6.8) u(t,z) = up(X¢,2(0)) a.s.,
where X¢ »(s), 0 < s <t, is the solution of the system of (backward) characteristics

(6.9) —dX = Zok Ywe(s), X(t) = .

Due to (6.2) and (see [18])

(6.10) > aa_ =
k

the phase flow of (6.9) preserves phase volume (see, e.g., [25, eq. (5.5), p. 247]). We
also recall that the It6 and Stratonovich forms of (6.9) coincide. As is known [25],
it is beneficial to approximate (6.9) using phase volume preserving schemes, e.g., by
the midpoint method [25, Chap. 4], which for (6.9) takes the following form (here we
exploited that the It6 and Stratonovich forms of (6.9) coincide): for an integer m > 1,

(6.11) X =z,

Xi+ X
XIZXH.l—I—ZO'k(w)(kAt)lVAt, l=n-1,...,0,
k

2
where ( kAt)l are, e.g., i.i.d. random variables with the law
gka |§k| S AAt7
(6.12) Pt = Ants &k > Ant,
—Ant, & < —Ang,

&, are independent A(0,1)-distributed random variables, and Aa; = +/2c|In At|,
¢ > 1. Its weak order is equal to one. This scheme requires solving the two-dimensional
nonlinear equation at each step. To solve it, we used the fixed-point method with the
level of tolerance 10713, and in our example two fixed-point iterations were sufficient
to reach this accuracy. Using X;.(0) = X, obtained by (6.11) with At = T'/m, we
simulate the Lo-norm of the second moment of the SPDE solution as follows:

1/2
2
(6.13)  |[BuA(T )| = l /W [Bu (T, ) dx] ~ || (T, )
- -1/2
M.
l < 2
=7 | 2 [Eud(Xrara2(0)]
S l45=1
- -1/2
M.
] & . 2
~ o | 2 | Bud (X 2(0)]
* Lig=1 i
¢ [, [ L 21 1/2
(1
|2 et o) |
S lig=1L" 1=1
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where v} = 27 = (i — 1){/Ms,i=1,..., Mg; Xt(l) (0) are independent realizations

ol a2

of the random variables Xt,m},m§ (0). The approximation in (6.13) has three errors:
(i) the error of discretization of the integral of the space domain [0,]?, which is
negligible in our example even for My = 10; (ii) the error of numerical integration
due to replacement of Xt ot 22 (0) by Xm},w? (0); (iii) the Monte Carlo error, which is
measured analogously to how it was done in section 5.4. We note that it is possible
to reduce the variance of the estimator on the right-hand side of (6.13), but we do
not consider it here. It is interesting that the midpoint scheme used to simulate
Xm}ﬂc? (0) gave very accurate results even with relatively large time steps.

We compare Algorithm 2 and the Monte Carlo algorithm (6.13) by simulating the
example (6.1), (6.6), (6.7) at T = 1. In these comparison tests, MATLAB R2010b
was used for each test on a single core of two Intel Xeon 5540 (2.53 GHz) quad-core
Nehalem processors. From Tables 6.2 and 6.3, we can draw the same conclusion as in
one dimension that for lower accuracy the Monte Carlo algorithm (6.13) outperforms
Algorithm 2 but that Algorithm 2 is more efficient for obtaining higher accuracy.

TABLE 6.2
Passive scalar equation (6.4)—performance of Algorithm 2. The parameters of Algorithm 2 are
N=2,n=1, M =900, 6t =1 x 10~%.

A p(1) CPU time
1x1072 8.89 x 1073 3.7 x 10% (sec.)
1x 1073 1.20 x 107% 3.2 x 10%(sec.)
5x 1074 3.73 x 107° 1.8 x 10%(hours)

TABLE 6.3
Passive scalar equation (6.4)—performance of the algorithm (6.11). The parameter is M = 100.

At L Error CPU time
2x 1071 2.5 x 10* 4.68 x 1073 +£4.38 x 1073 1.2 x 10! (sec.)
1x1072 4x107 1.46 x 10744+ 1.08 x 10=% 3.5 x 10 (sec.)
1x 1073 4x 108 ~ x107%43.03 x 1075 9.7 x 103 (hours)?

7. Summary. We have developed a multistage WCE method for advection-
diffusion-reaction equations with multiplicative noise, which form a wide class of lin-
ear parabolic SPDEs. We complemented this method by a deterministic algorithm for
computing second moments of the SPDE solutions without any use of the Monte Carlo
technique. Our numerical tests demonstrated that the proposed WCE-based deter-
ministic algorithm can be more efficient than Monte Carlo-type methods in obtaining
results of higher accuracy, scaling as AV, where A is the time step of the “online”
integration and N is the order of Wiener chaos. We have also found that for obtain-
ing results of lower accuracy, Monte Carlo-type methods outperform the deterministic
algorithm for computing moments even in the one-dimensional case. The proposed
WCE-based algorithm is conceptually different from Monte Carlo-type methods, and
thus it can be used for independent verification of results obtained by Monte Carlo
solvers. The efficiency of the algorithm can be greatly improved if it is combined with

I This is an estimated time according to the tests with smaller At, L and with M = 100.
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reduced-order methods so that only a handful of modes will be required to represent
the solution accurately in physical space, i.e., a case with small M.

Further work is required to extend the theoretical analysis of [19] to the stochastic

advection-diffusion-reaction equations we have considered here as well as to weak con-
vergence for WCE-based algorithms. The numerical experiments in section 6 with the
periodic passive scalar equation were motivated by a nonviscous transport equation
with Kraichnan’s velocity, which corresponds to an SPDE with a less regular solution
than the one we simulated in section 6. Though we obtained promising results in our
numerical tests, simulation of the passive scalar equation with Kraichnan’s velocity
requires special consideration. These aspects will be addressed in a future publication.
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