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We consider a piston with a velocity perturbed by Brownian motion moving into a straight
tube filled with a perfect gas at rest. The shock generated ahead of the piston can be located
by solving the one-dimensional Euler equations driven by white noise using the Stratono-
vich or Ito formulations. We approximate the Brownian motion with its spectral truncation
and subsequently apply stochastic collocation using either sparse grid or the quasi-Monte
Carlo (QMC) method. In particular, we first transform the Euler equations with an unsteady
stochastic boundary into stochastic Euler equations over a fixed domain with a time-
dependent stochastic source term. We then solve the transformed equations by splitting
them up into two parts, i.e., a ‘deterministic part’ and a ‘stochastic part’. Numerical results
verify the Stratonovich–Euler and Ito–Euler models against stochastic perturbation results,
and demonstrate the efficiency of sparse grid and QMC for small and large random piston
motions, respectively. The variance of shock location of the piston grows cubically in the
case of white noise in contrast to colored noise reported in [1], where the variance of shock
location grows quadratically with time for short times and linearly for longer times.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the polynomial chaos method and its extensions for colored noise have been advanced significantly for
computational fluid dynamics problems, see e.g. [2,3]. Although there has been little attention paid on high-order numerical
methods for white noise, white noise is nevertheless important in computational modeling, e.g. as a limit of colored noise
when the correlation length goes to zero. An extremely small correlation length for colored noise will produce a high dimen-
sional problem in random space and causes the so-called ‘‘curse-of-dimensionality’’ for high-order numerical methods
which are prohibitively expensive. Unlike colored noise, white noise requires a fundamentally different calculus (see e.g.
[4]) and therefore the development of new numerical methods.

Here, we revisit the stochastic piston problem in [1], which defines a testbed for numerical solvers in both random and
physical space. The piston driven by time-varying random motions moves into a straight tube filled with a perfect gas at rest.
Of interest is to quantify the perturbation of the shock position ahead of the piston corresponding to the random motion. For
the perturbed shock position, Lin et al. [1] obtained analytical solutions for small amplitudes of noises and numerical solu-
tions for large amplitudes of noises, with the method of stochastic perturbation analysis and polynomial chaos, respectively.
A specific random motion of the piston was studied where the piston velocity was perturbed by a correlated random process
with zero mean and exponential covariance kernel. It was concluded that the variance of the shock location grows quadrat-
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ically with time for small time and linearly for large time by both the perturbation analysis and numerical simulations of the
corresponding Euler equations. Numerical results from the Monte Carlo method and the polynomial chaos method (e.g. [5])
for the stochastic Euler equations showed good agreement with the results from the perturbation analysis.

Here we consider the case of piston velocity perturbed by Brownian motion, which leads to the Euler equations subject to
white noise rather than the Euler equations subject to colored noise in [1]. We will use the Monte Carlo method and the
recently developed stochastic collocation method for equations driven by white noise [6]. Note that the method of pertur-
bation analysis in [1] is independent of the type of noises when they have continuous paths in the random space so that the
results by the perturbation analysis can be understood in a path-wise sense. Therefore, the stochastic piston problem defined
in [1] can serve as a rigorous testbed of evaluating numerical stochastic solvers. So we will use the variances from pertur-
bation analysis as reference solutions.

Although, the Monte Carlo method is one of the popular methods for solving equations driven by white noise [7], it con-
verges slowly as the total error of the method is dominated by the statistical error, which is proportional to 1ffiffiffi

N
p with N being

the number of sampling points. To avoid this slow convergence induced by the statistical error, Zhang et al. proposed in [6] a
new stochastic collocation method for time-dependent equations driven by white noise in time. Stochastic collocation meth-
ods are based on high-dimensional integration quadrature rules instead of statistical methods [8–10]. While the main dif-
ficulty of the stochastic collocation method comes from the large number of random variables, in [6] we proposed a
spectral expansion of the Brownian motion to reduce the number of random variables up to relatively large time for
time-dependent equations so that the stochastic collocation method can be applied efficiently. Here we further extend this
approach to conservation laws by adopting the quasi-Monte Carlo (QMC) method to compute up to larger time and=or for
large amplitudes of noises. The QMC method is efficient and converges faster than the Monte Carlo method if relatively high
dimensional integration is considered, see e.g. [11,12]; see also [13] for the application of the QMC method to elliptic equa-
tions in random porous media.

The paper is organized as follows. In Section 2, we describe the piston problem driven by random processes and review
two different approaches to obtain the shock location: the perturbation analysis and the one-dimensional Euler equations.
When the piston is driven by the Brownian motion, we introduce two types of Euler equations according to different inter-
pretations of stochastic products for white noise, i.e., the Stratonovich–Euler equations and the Ito–Euler equations. In Sec-
tion 3, we describe a splitting method for the Euler equations before comparing the variances from the two stochastic Euler
equations with those from first-order perturbation analysis. We demonstrate that indeed the Stratonovich–Euler equations
are suitable for obtaining the variances of perturbations piston locations. We apply a stochastic collocation method to solve
the Stratonovich–Euler equations in the splitting-method setting. We conclude in Section 5 with a summary and comments
on computational efficiency. The Appendix includes some details of the stochastic collocation method and of a model ordin-
ary differential equation problem.

2. Theoretical background

Suppose that the piston velocity is perturbed by a time-dependent random process so that the piston velocity is
up ¼ Up þ vpðt;xÞ, where x is a point in random space; see Fig. 1 for a sketch of shock tube driven by a piston perturbed
with random motion. Here we write vpðt;xÞ ¼ �UpVðt;xÞ and denote the stochastic process Vðt;xÞ as VðtÞ for brevity.

When � ¼ 0, i.e., no perturbation is imposed on the piston, the piston moves into the tube with a constant velocity Up, the
shock speed S (and thus the shock location) can be determined analytically, see [1,14]. When � is very small, one can deter-
mine the perturbation process of the shock location using the first-order perturbation analysis [1], that is:
zðtÞ ¼ �UpqS0
X1
n¼0

ð�rÞn
Z t

0
Vðabnt1Þdt1; ð2:1Þ
Fig. 1. A sketch of piston-driven shock tube with random piston motion.
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where zðtÞ þ tS is the shock location induced by the random motion of piston,
S0 ¼ cþ 1
4

S

S� cþ1
4 Up

;

q ¼ 2
1þ k

; r ¼ 1� k
1þ k

; k ¼ C�
Sþ S0Up

1þ cSUp
;

a ¼ C� þ Up � S
C�

; b ¼ C� þ Up � S
C� þ S� Up

:

Here c is the ratio of the specific heats and C� the sound speed behind the shock when the piston is unperturbed. The first
two moments of the perturbation process zðtÞ are
E½zðtÞ� ¼ 0;

E½z2ðtÞ� ¼ ð�UpqS0Þ2E
X1
n¼0

ð�rÞn
Z t

0
Vðabnt1; �Þdt1

 !2
24 35:
We note that the perturbation analysis in [1] is independent of the perturbation process whenever the process is contin-
uous such that the analysis can be understood in a path-wise way. By taking Vðt;xÞ as the Brownian motion WðtÞ (omitting
x), we then have
E½z2ðtÞ� ¼ ð�UpqS0Þ2E
X1
n¼0

ð�rÞn
Z t

0
Wðabnt1Þdt1

 !2
24 35 ¼ ð�UpqS0Þ2E

X1
n¼0

ð�rÞn
Z t

0

ffiffiffiffiffiffiffiffi
abn

p
Wðt1Þdt1

 !2
24 35

¼ ð�UpqS0Þ2
X1
n¼0

ð�rÞn
ffiffiffiffiffiffiffiffi
abn

p !2

E

Z t

0
Wðt1Þdt1

� �2
" #

¼ at3

3
ð�UpqS0Þ2 1

ð1þ rb
1
2Þ2

; ð2:2Þ
where we use the scaling property of Brownian motion (Wðabnt1Þ ¼
ffiffiffiffiffiffiffiffi
abn

p
Wðt1Þ) and

R t
0 Wðt1Þdt1 is a Gaussian process with

zero mean and variance t3

3 .

2.1. Stochastic Euler equations

The stochastic piston problem can be modeled by the following Euler equations with unsteady stochastic boundary:
@

@t
Uþ @

@x
f ðUÞð Þ ¼ 0; ð2:3Þ
where U ¼
q
qu
E

0@ 1A; f ðUÞ ¼
qu

qu2 þ P
uðP þ EÞ

0@ 1A, q is density, u is velocity, E is total energy, and P is pressure given by

ðc� 1ÞðE� 1
2 qu2Þ and c ¼ 1:4. The initial and boundary conditions are given by
uðx;0Þ ¼ 0; Pðx;0Þ ¼ Pþ; qðx;0Þ ¼ qþ; x > XpðtÞ;

PðXpðtÞ;0Þ ¼ P�; qðXpðtÞ;0Þ ¼ q�
and
uðXpðtÞ; tÞ ¼
@

@t
XpðtÞ ¼ upðtÞ; t > 0;
where XpðtÞ is the position of the piston, and upðtÞ is the velocity of the piston.
This problem is a moving boundary problem and can be transformed to a fixed boundary problem by defining a new coor-

dinate ðy; sÞ from ðx; tÞ via the following transform:
y ¼ x�
Z s

0
upðs1;xÞds1; s ¼ t: ð2:4Þ
Defining v ¼ u� up, we then have the following Euler equations with a source term [1]:
@

@s
V þ @

@y
f ðVÞð Þ ¼ gðVÞ @up

@s
; ð2:5Þ
where V ¼
q
qveE

0@ 1A, eE ¼ P
c�1þ 1

2 qv2 and gðVÞ ¼
0
�q
�qv

0@ 1A. The initial and boundary conditions are given by
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vðy;0Þ ¼ �Up; Pðy; 0Þ ¼ Pþ; qðy; 0Þ ¼ qþ; y > 0;

Pð0;0Þ ¼ P�; qð0;0Þ ¼ q� ð2:6Þ
and
vð0; sÞ ¼ 0; s P 0:
Our goal here is to compute the variance of the shock location perturbation zðsÞ. The perturbation of the shock location is
zðsÞ ¼ XsðsÞ � sS ¼ XsðtÞ � tS, where XsðsÞ ¼ YsðsÞ þ

R s
0 upðt1Þdt1 is the shock location while YsðsÞ is the shock location under

the new coordinate ðy; sÞ.
If we take upðtÞ ¼ Upð1þ �WðtÞÞ, where WðtÞ is a scalar Brownian motion, we are led to the following Euler equations
@

@s
V þ @

@y
f ðVÞð Þ ¼ �UpgðVÞ � _W; ð2:7Þ
where ‘�’ denotes two different products as follows:

(1) Stratonovich–Euler equations
@

@s
V þ @

@y
f ðVÞð Þ ¼ �UpgðVÞ � _W; ð2:8Þ
where ‘�’ is the Stratonovich product, or

(2) Ito–Euler equations
@

@s
V þ @

@y
f ðVÞð Þ ¼ �UpgðVÞ � _W; ð2:9Þ
where ‘�’ is the Ito product. The initial and boundary conditions are imposed as above. The meaning of ‘�’ will be explained in
Section 3.2 and that of ‘�’ in Section 3.3.

We will verify these two models (2.8) and (2.9) by solving them numerically with a splitting method in the next section.

3. Verification of the Stratonovich- and Ito–Euler equations

In the previous section, we introduced two approaches to obtain the variances of the shock location. Here, we verify the
correctness of the stochastic Euler equations by comparing the variances of the shock location obtained by two approaches,
i.e., the first-order perturbation analysis and the numerical solution of the stochastic Euler equations, up to time T ¼ 5.

For numerical simulations, we consider the piston velocity Up ¼ 1:25, where the Mach number of the shock is M ¼ 2 and
c ¼ 1:4. We normalize all velocities with Cþ, the sound speed ahead of the shock, i.e. Cþ ¼ 1. Then, the initial conditions are
given through the unperturbed relations of states variables [1] as follows:
Pþ ¼ 4:5; P� ¼ 1:0; qþ ¼ 3:73; q� ¼ 1:4:
3.1. A splitting method for stochastic Euler equations

We use a source-term (noise-term) splitting method proposed in [15] for a scalar conservation law with time-dependent
white noise source term. Holden and Risebro [15] considered a Cauchy problem on the whole line with multiplicative white
noise in Ito’s sense: @

@t uþ @
@x f ðuÞ ¼ gðuÞ _WðtÞwith deterministic essentially bounded initial condition where f ; g are both Lips-

chitz, and g has bounded support. They proved the almost-sure-convergence of this splitting method to a weak solution of the
Cauchy problem assuming initial condition having bounded support and finitely many extrema while provided no conver-
gence rate.

Here we extend this splitting method to the system (2.7). Specifically, given the solution at sn; Vn, to obtain the solution
at snþ1, we first solve, on the small time interval ½sn; snþ1Þ,
@

@s
Vð1Þ þ @

@y
f ðVð1ÞÞ
� �

¼ 0; ð3:1Þ
with the boundary conditions (2.6) and initial condition Vð1ÞðsnÞ ¼ Vn; then we solve the following Cauchy problem, again on
½sn; snþ1Þ,
@

@s
Vð2Þ ¼ �UpgðVð2ÞÞ � _W; ð3:2Þ
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with the initial condition Vð2ÞðsnÞ ¼ Vð1Þðsnþ1Þ. Then the solution at time snþ1; Vnþ1, is set as Vð2Þðsnþ1Þ (subject to the error
from the splitting). If we denote by Sðs; snÞ the operator which takes VðsnÞ as initial condition at sn to the weak solution
of (3.1) and by Rðs; snÞ the operator which takes the initial condition at time sn to the solution of the stochastic differential
equation (3.2). Then the approximate solution at snþ1 is defined by Vnþ1 ¼ Rðsnþ1; snÞSðsnþ1; snÞVn. Thus we define a sequence
of approximate solution, Vn� �

, to (2.7) at time snf g.
The application of splitting technique requires numerical methods for (3.1) and (3.2). The splitting scheme allows us to

deploy efficient existing methods to solve them separately. To solve (3.1), we use a fifth-order WENO scheme in physical
space and second-order strong-property-preserving (SPP) Runge–Kutta in time [16]. In solving (3.2), we will employ two dif-
ferent methods: the Monte Carlo method and the stochastic collocation method developed in [6]. We employ 1000 points for
the fifth-order WENO scheme over the interval ½0;5� and the time step size ds ¼ 0:0005 so that the error from time discret-
ization is negligible. As we mentioned before, our goal is to compute the variance of the perturbed shock location. Since there
is always only one shock, we obtain YsðsÞ by finding the biggest jump of pressure, where the error is of order OðdxÞ (dx is the
mesh size in physical space).

3.2. Stratonovich–Euler equations versus first-order perturbation analysis

We first compare the results obtained by solving the Stratonovich–Euler equations with the Monte Carlo method and
those obtained from first-order perturbation analysis.

To solve the Stratonovich–Euler equation (2.8) with the splitting method, we need to solve (3.2) as follows. By the def-
inition of the Stratonovich integral, we have that, for a square-integrable stochastic process hðtÞ,
Z T

0
hðtÞ � dW ¼ lim

n!1
hðtnþ1=2ÞDWn;
where tnþ1=2 ¼ tnþ1þtn
2 and DWn ¼Wðtnþ1Þ �WðtnÞ. The limit is understood in the mean-square sense [4]. Thus, we will solve

Eq. (3.2) by the following Crank–Nicolson scheme
Vð2Þðsnþ1Þ ¼ Vð2ÞðsnÞ þ �UpgðVð2Þðsnþ1=2ÞÞDWn: ð3:3Þ
In our simulation, the values of function gðVð2ÞðsÞÞ at snþ1=2 are approximated by the average values gðVð2ÞðsnÞÞþgðVð2Þðsnþ1ÞÞ
2 . Note

that for the specific form of g, we do not have to invert the resulting matrix in (3.3).
Fig. 2 verifies that the Stratonovich–Euler equation (2.8) can capture the variances of shock location for the stochastic pis-

ton problem driven by Brownian motion. Here we employ 10,000 realizations so that the statistical error can be neglected for
noises with amplitude no less than 0:05. We also note that for noises with amplitude less than 0:05, the error of the adopted
methods is dominated by the statistical error from the Monte Carlo method and also the space discretization error from
WENO. Fig. 2 presents the variances obtained by the Monte Carlo method (3.1)–(3.3) and those from variances estimates
by the first-order perturbation analysis (2.2). We observe the agreement between the results from the Monte Carlo method
and the perturbation analysis within small time and for small noises. Fig. 2(a) shows the results for small noises, i.e.,
� � Oð10�2Þ while Fig. 2(b) for large noises, i.e., � � Oð10�1Þ. The difference between the variances from the Monte Carlo
method and the first-order perturbation analysis (2.2) is at most 12��13% of the variances (2.2), up to time T ¼ 5, for
all cases except for the case � ¼ 0:5; for the latter, the difference between the variances is at most 19:3% of the variance
(2.2). However, for small time (t < 1) the variances by Monte Carlo and perturbation analysis agree well, while they deviate
much after t ¼ 2. This effect can be explained as follows. For t < 1, the variance of the driving process (Brownian motion) has
small value (

ffiffi
t
p

) corresponding to a weak perturbation; while at later time it has larger value increasing substantially the
perturbation. (We remind the reader that the perturbation process in [1] has unit variance.)

3.3. Stratonovich–Euler equations versus Ito–Euler equations

For the Ito–Euler equation (2.9), we solve (3.2) by the forward Euler scheme
Vð2Þðsnþ1Þ ¼ Vð2ÞðsnÞ þ �UpgðVð2ÞðsnÞÞDWn: ð3:4Þ
Recall that the Ito integral is defined as, see e.g. [4],
Z T

0
hðtÞ � dW ¼ lim

n!1
hðtnÞDWn:
Next we compare the numerical results for the Stratonovich–Euler equations and the Ito–Euler ones using the above dis-
cretization in time. We observe from Fig. 3 that for both small and large noises, these two types of equations have almost the
same variances for the perturbed shock location E½z2ðtÞ� up to time T ¼ 5. Actually, the difference of variances by the Stra-
tonovich–Euler and Ito–Euler equations for � 6 0:2 is less than 10�3 up to time t ¼ 5 which lies within the discretization er-
rors. For � ¼ 0:5, we present in Table 1 the difference of variances for these two approaches using the same sequence of
Monte Carlo points. The Stratonovich–Euler equations exhibits larger variances in large time but the difference from those
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Fig. 2. Comparison between the results from first-order perturbation analysis (2.2) and solving the Stratonovich–Euler equation (2.8) by the splitting
method (3.1)–(3.3).
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by the Ito–Euler equations is less than 10% of the variances by Ito–Euler equations. We then conclude that the Stratonovich–
Euler equations are a suitable model for the piston problem driven by Brownian motion and we will consider only this ap-
proach hereafter.

4. The stochastic collocation method

Next we test the stochastic collocation method versus the Monte Carlo method for the Stratonovich–Euler equation (2.8).
To solve the Stratonovich–Euler equation (2.8), we again use the splitting method (3.1) and (3.2). In (3.2), we adopt the sto-
chastic collocation method [6], where we first introduce a spectral approximation for the Brownian motions and subse-
quently apply the sparse grid method. Specifically, we first approximate Brownian motion with its spectral
approximation, using K multi-elements:
W ðn;KÞðsÞ ¼
XK�1

k¼0

Xn

i¼1

Z s

0
v½tk ;tkþ1ÞðsÞm

ðkÞ
i ðsÞdsnðkÞi ; s 2 ½0; T�;
where 0 ¼ t0 < t1 < � � � < tK ¼ T; v½tk ;tkþ1ÞðsÞ is the indicator function of the interval ½tk; tkþ1Þ; mðkÞi

n o1
i¼1

is a complete ortho-

normal basis in L2ð½tk; tkþ1�Þ, and nðkÞi are mutually independent standard Gaussian random variables (with zero mean and var-
iance one). Hence, we obtain the following partial differential equation with smooth inputs:
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Fig. 3. Comparison between solving Stratonovich–Euler equation (2.8) and Ito–Euler equation (2.9) by the splitting method (3.1) and (3.2).

Table 1
The difference of variances of shock location by Stratonovich–Euler and Ito–Euler equations for � ¼ 0:5.

t 1.0 2.0 3.0 4.0 5.0

0.0007 0.0129 0.0742 0.2353 0.2421
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@

@s
Vð2Þ ¼ �UpgðVð2ÞÞ

XK�1

k¼0

Xn

i¼1

v½tk ;tkþ1ÞðsÞm
ðkÞ
i ðsÞn

ðkÞ
i : ð4:1Þ
In (4.1) we apply the stochastic collocation method [8–10] for smooth noises; see Appendix A for a brief review on the sto-
chastic collocation method for white noise and [6] for more details. The stochastic collocation method we adopt here is the
sparse grid of Smolyak type based on 1D Gaussian–Hermite quadrature; we refer to [17] for implementation details.

The first issue we have for the piston problem here is the discontinuity of the solution to (2.8), where the condition for
spectral approximation to work may be invalid [18,6]. In practice, we solve the problem with the WENO scheme, which
smears the shock somewhat, and thus we have higher regularity than that of the original problem. A second issue is that
the use of the stochastic collocation method (Smolyak sparse grid) with Gaussian quadrature may not exhibit fast conver-
gence because of the low regularity. Thus, we use n ¼ 1 or 2 with large K (small time step in W ðn;KÞ) instead of large n with
small K. This choice of n is verified with control tests with n ¼ 3;4 for different K, where the numerical results show large
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deviations from those of Monte Carlo method with high oscillations. We choose a low sparse grid level (i.e. two) to be con-
sistent with the ‘available regularity’ (numerical tests with high sparse grid level show an instability). The third issue is the
so-called ‘‘curse-of-dimensionality’’. In practice, when the number of random variables, Kn, increases, the Smolyak sparse
grid method will not work well and will be replaced by the QMC method.

Here we adopt a uniform partition of the time interval ½0; T�, that is tk ¼ ðk� 1ÞD; k ¼ 1; . . . ;K. The complete orthonormal
basis we employ in L2ð½tk; tkþ1�Þ is the cosine basis
Fig. 4.
stochas
mðkÞ1 ðtÞ ¼
1ffiffiffiffi
D
p ; mðkÞi ðtÞ ¼

ffiffiffiffi
2
D

r
cos

ði� 1Þp
D

ðt � tkÞ
� �

; i P 2:
Fig. 4 compares the numerical results from the Monte Carlo method (3.1)–(3.3) and the stochastic collocation method for
(3.1) and (4.1) with both small and large noises. For each �, we use different D (the length of the uniform partition of time
interval ½0; T�), i.e. different size of elements K. We note that all the numerical solutions obtained by the stochastic collocation
method agree with those from the Monte Carlo method (3.1)–(3.3) within small time. Here we do not observe convergence
in n, recalling that such convergence requires smoothness in random space [6].

We note that smaller D and larger n may lead to a larger number of random variables and thus the break down of the
sparse grid method [10]. So we first test the cases of small D such that we can apply the sparse grid method. Fig. 4 shows
that a low level sparse grid method works well for the piston problem with small perturbations. We note that our sparse
grid level is two and thus the number of collocation points is 2n T

Dþ 1.
When n ¼ 1, we observe in Fig. 4 good agreement of the results by the stochastic collocation method and the Monte Carlo

method in small time (t 6 2). Notice that when n ¼ 1, (4.1) is the classical Wong–Zakai approximation [19]
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Comparison between numerical results from Stratonovich–Euler equation (2.8) using the direct Monte Carlo method (3.1) and (3.3) and the
tic collocation method (4.1). The sparse grid level is 2 and D is the size of element in time in the stochastic collocation method.
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However, for n ¼ 2, there are some disagreements between the results. In Fig. 4(a) and 4(c), the results of the case n ¼ 2 and
D ¼ 0:2 (note that we have nK ¼ 50 random variables) underestimate those results from the Monte Carlo method and the
stochastic collocation method with a smaller number of random variables (n ¼ 1). The larger number of random variables
(n ¼ 2 here) does not result in convergence since we do not have a smooth solution as we mention above.

For the case with large perturbation, � ¼ 0:5, we require smaller D and thus more random variables. This is why we ob-
serve the disagreement in Fig. 4(d). For all cases in Fig. 4, we observe a deviation of numerical results by stochastic colloca-
tion methods from those of Monte Carlo method over large time. Similar effects arise in the application of spectral methods
in random space, e.g., in Wiener chaos methods. The interested reader may refer to [20] for a discussion of this effect.

To adapt to the high dimensionality (large number of random variables), we employ the QMC method instead of sparse
grid methods. We consider two popular QMC sequences: one is a scrambled Halton with the method RR2 proposed in [21];
and the other is a scrambled Sobol sequence suggested in [22]. Both sequences lie in hypercube and thus an inverse trans-
formation is adopted to generate sequences in the entire space based on these two sequences. In Fig. 5, we test the large
noise case, i.e. � ¼ 0:5. Both Halton and Sobol sequences work if a moderately large sample of the sequences is adopted.
For 1000 sample points, variances from both sequences are closer to those from Monte Carlo method (3.1)–(3.3) than those
from 500 sample points of both sequences.
5. Summary

We simulated a stochastic piston problem by time-varying Brownian motions of a piston moving inside an adiabatic tube
of constant area, which is governed by the Euler equations driven by white noise. By splitting the Euler equations into two
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Fig. 5. Comparison between numerical results from Stratonovich–Euler equation (2.8) using direct Monte Carlo method (3.1)–(3.3) and the QMC method
for (4.1) with a large noise: � ¼ 0:5.
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parts – a ‘deterministic part’ and a ‘stochastic part’ – we solved the ‘stochastic part’ by the Monte Carlo method and the sto-
chastic collocation method. The numerical results show that the variances of the shock location grow cubically with time,
which are significantly different from those from colored noise driven piston. In Fig. 6 we compare the variances of shock
positions induced by three different Gaussian noises: Brownian motion, random process with zero mean and exponential
covariance kernel expð� t1 � t2j jÞ, and standard Gaussian random variable, where the noise amplitude is � ¼ 0:1. The results
are obtained via the stochastic perturbation analysis. The case of Brownian motion induces smaller values of variances than
the other two cases for short times and greater values of variances for longer times. We note that the effects of different
Gaussian processes are similar to a first-order stochastic differential equation responding to different Gaussian processes.
The shock location depends on the time integration of the underlying Gaussian processes as the solution to stochastic dif-
ferential equation does; see Appendix B for details.

Firstly, we solved the ‘stochastic part’ using the Monte Carlo method by the definition of Stratonovich integral and ver-
ified the Stratonovich–Euler equations by the first-order perturbation analysis presented in [1]. Secondly, we solved the Stra-
tonovich–Euler equations by solving the ‘stochastic part’ with the stochastic collocation method using a multi-element
spectral approximation of the Brownian motion. Finally, we tested two types of QMC sequences for the ‘stochastic part’ using
a multi-element spectral approximation of the Brownian motion when the noise is large. The stochastic collocation and QMC
methods are superior to the Monte Carlo method in the sense that they can achieve faster convergence than the classic
Monte Carlo method.

The low accuracy of the stochastic collocation method, especially for long times, is caused by the discontinuity of the solu-
tion. Due to the deterministic solver, we have that the accuracy for the numerical shock location is only first-order in the
spatial step size, i.e., OðdxÞ . For small noises, we had agreement between the results from the Euler solver and those from
perturbation analysis. However, for large noises, we need small time-interval D for the stochastic collocation method to con-
verge. As smaller time-interval D leads to larger number of random variables, we adopted the QMC method which led to
accurate solutions.

With regards to computational efficiency, the stochastic collocation method is more efficient than Monte Carlo simulation
when a small number of random variables are involved, where the number of collocation points is far less than Monte Carlo
sampling points. As time becomes larger, we introduce more random variables and thus we need to employ the more effi-
cient QMC method. In other applications involving long-time integration, it may be possible to use all three different ways of
sampling, i.e., starting with sparse grid for early time, continuing with the QMC for moderate time and even switching to the
Monte Carlo method for long time.
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Fig. 7. Comparison of variances of the solutions for four models of kðtÞ up to time t ¼ 1 : A ¼ 1.

Z. Zhang et al. / Journal of Computational Physics 236 (2013) 15–27 25
Appendix A. A brief review of the stochastic collocation method for white-noise driven equations

We describe briefly the stochastic collocation method for stochastic ordinary equations in the following form
dX ¼ bðt;XÞdt þ rðt;XÞ � dWðtÞ; Xð0Þ ¼ X0; ðA:1Þ
where WðtÞ is the Brownian motion, ‘�’ indicates the Stratonovich integral. A popular approach for Eq. (A.1) is to approximate
the Brownian motion with a smoother process (than the Brownian motion), which is called Wong–Zakai approximation (see
Wong and Zakai [19,23]). In [6], we proposed the following multi-element spectral approximation of the Brownian motion to
solve Eq. (A.1):
W ðn;KÞðtÞ ¼
XK�1

k¼0

Xn

i¼1

Z t

0
v½tk ;tkþ1ÞðsÞm

ðkÞ
i ðsÞdsnðkÞi ; t 2 ½0; T�;
where 0 ¼ t0 < t1 < � � � < tK ¼ T; v½tk ;tkþ1ÞðtÞ is the indicator function of the interval ½tk; tkþ1Þ and nðkÞi are mutually independent
standard Gaussian random variables. Here mðkÞi

n o1
i¼1

is a complete orthonormal basis in L2ð½tk; tkþ1�Þ, e.g. the cosine basis
mðkÞ1 ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tkþ1 � tk

p ; mðkÞi ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

tkþ1 � tk

s
cos

ði� 1Þp
tkþ1 � tk

ðt � tkÞ
� �

; i P 2:
The multi-element spectral approximation of Wong–Zakai types leads to the following ordinary differential equation
with smooth inputs:
d~X ¼ bðt; ~XÞdt þ rðt; ~XÞ
Xn

i¼1

XK

k¼1

v½tk�1 ;tkÞðtÞm
ðkÞ
i ðtÞn

ðkÞ
i dt; ~Xð0Þ ¼ X0: ðA:2Þ
The convergence of this approximation is guaranteed by Sussmann’s Theorems [18]. Compared to other popular methods for
solving (A.1) which involves only the increments of Brownian motion, it often suffices to use just a few random variables at
every step of the spectral approximation of Brownian motion[6]. This effect allows us to relax the restrictions on the dimen-
sionality quite dramatically.

To solve (A.2), we propose non-statistical stochastic collocation methods [8–10] for (A.2) so that we avoid the slow con-
vergence of the Monte Carlo method whose error is usually dominated by the statistical error, which is proportional to 1ffiffiffi

N
p

with N being the number of sampling points. If T is not too large, we showed that the proposed approach has spectral con-
vergence in random space [6] if the stochastic collocation method are based on one-dimensional Gauss-Hermite quadrature
rules.

Appendix B. A first-order model driven by different Gaussian processes

Consider the following simple ordinary differential equation with multiplicative noise:
dy ¼ kðt;xÞydt; yð0Þ ¼ y0: ðB:1Þ
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Fig. 8. Comparison of variances of the solutions for four models of kðtÞ at large time: A ¼ 1.
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Here we take y0 ¼ 1 for simplicity. Suppose kðt;xÞ is a Gaussian random variable or process with zero mean. Specifically,
kðt;xÞ will take the following form:

� kðt;xÞ ¼: n �Nð0;1Þ.
� kðt;xÞ ¼: Vðt;xÞ where the two-point correlation function of VðtÞ is expð� t1�t2j j

A Þ.
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� kðt;xÞ ¼: Wðt;xÞ is the standard Brownian motion: E½WðtÞWðsÞ� ¼minðt; sÞ.
� kðt;xÞ ¼: _Wðt;xÞ is the white noise: E½ _WðtÞ _WðsÞ� ¼ dðt � sÞ.

B.1. Appendix

Remark 1. When kðt;xÞ ¼: _Wðt;xÞ, Eq. (B.1) is understood in the Stratonovich sense:
dy ¼ y � dWðtÞ; yð0Þ ¼ y0: ðB:2Þ

The exact solution to Eq. (B.1) is y ¼ y0 expðKðtÞÞ, where KðtÞ ¼

R t
0 kðsÞds is again Gaussian with mean zero and variance

r2. Then we have the moments of the solution y, for m ¼ 1;2; . . . ; E½ymðtÞ� ¼ ym
0 exp m2

2 r2
� �

, where r2 ¼ t2; 2Atþ

2A2 exp � t
A

	 

� 1

	 

; t3

3 ; t for the listed processes, respectively. Figs. 7 and 8 illustrate the different behavior of second-order
moments with small time t 2 ½0;1� and larger time t > 1. The amplitudes of variances are similar to those of variances of the
shock location in Fig. 6, indicating three different behaviors in three different time intervals.
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