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Convolutionless
Nakajima–Zwanzig equations
for stochastic analysis in
nonlinear dynamical systems
D. Venturi and G. E. Karniadakis

Division of Applied Mathematics, Brown University, Providence,
RI 02912, USA

Determining the statistical properties of stochastic
nonlinear systems is of major interest across many
disciplines. Currently, there are no general efficient
methods to deal with this challenging problem that
involves high dimensionality, low regularity and
random frequencies. We propose a framework for
stochastic analysis in nonlinear dynamical systems
based on goal-oriented probability density function
(PDF) methods. The key idea stems from techniques
of irreversible statistical mechanics, and it relies
on deriving evolution equations for the PDF of
quantities of interest, e.g. functionals of the solution to
systems of stochastic ordinary and partial differential
equations. Such quantities could be low-dimensional
objects in infinite dimensional phase spaces. We
develop the goal-oriented PDF method in the context
of the time-convolutionless Nakajima–Zwanzig–Mori
formalism. We address the question of approximation
of reduced-order density equations by multi-level
coarse graining, perturbation series and operator
cumulant resummation. Numerical examples are
presented for stochastic resonance and stochastic
advection–reaction problems.

1. Introduction
Computing the statistical properties of a stochastic
system relies on representing the functional relation
between the state variables and the random input
processes. Well-known approaches are polynomial chaos
[1–3], multi-element and sparse adaptive probabilistic
collocation [4,5], high-dimensional model representations
[6], stochastic biorthogonal expansions [7] and separated
representations [8,9]. These techniques can provide

2014 The Author(s) Published by the Royal Society. All rights reserved.
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considerable speed-up in computational time when compared with Monte Carlo (MC) or quasi-
MC methods, for low to moderate number of stochastic dimensions.

In this paper, we propose a different approach based on modeling, via deterministic equations,
the probability density function (PDF) of low-dimensional quantities of interest, i.e. phase space
functions of high-dimensional stochastic systems. The key idea stems from techniques of
irreversible statistical mechanics, in particular the Nakajima–Zwanzig–Mori formalism (e.g.
[10–13]). To introduce the method, let us consider a general nonlinear system in the form

dx̂(t)
dt
=G(x̂, ξ , t)

and x̂(0)= x0(ω),

⎫⎪⎬
⎪⎭ (1.1)

where x̂(t) ∈R
n is a multi-dimensional stochastic process, ξ ∈R

m is a time-independent random
vector (excitation vector), G : R

n+m+1→R
n is a Lipschitz continuous (deterministic) function

and x̂0 ∈R
n is a random initial state. We shall denote the components of x̂ and G as x̂i and

Gi, respectively. The existence and uniqueness of the solution to (1.1) for each realization of x0
and ξ allows us to consider x̂(t) as a deterministic function of x0 and ξ , i.e. we have the flow
map X(t; x0, ξ ). In this hypothesis, it is straightforward to obtain the following exact hyperbolic
conservation law for the joint (response–excitation) PDF [14,15] of the random vectors x̂(t) and ξ

(see the electronic supplementary material, S1)

∂p(t, a, b)
∂t

= L(t, a, b)p(t, a, b), L(t, a, b) def=−∇ ·G(a, b, t)−G(a, b, t) · ∇, (1.2)

where a ∈R
n are the phase space coordinates corresponding to x̂(t), b ∈R

m those corresponding
to ξ and ∇ def= (∂/∂a1, . . . , ∂/∂an). Equation (1.2) is equivalent to the Liouville equation of classical
statistical mechanics, with the remarkable difference that the phase variables we consider here can
be rather general quantities and not simply the positions and the momenta of random particles.
For example, they could be the Galerkin coefficients of the solution to stochastic partial differential
equations (SPDEs). Early formulations in this direction are due to Edwards [16], Herring [17] and
Montgomery [18].

Nonlinear systems in the form (1.1) can lead to complex dynamics, including bifurcations,
fractal attractors, multiple stable steady states and transition scenarios. Consequently, the solution
to the joint PDF equation (1.2) could be very complex as well, because it relates directly to the
geometry of the phase space. For example, it is well known that the PDF of the solution to
the Lorenz three-mode problem lies on a fractal attractor whose Hausdorff dimension has been
estimated to be about 2.06 [19]. Chaotic states and existence of strange attractors has been well
documented for many other systems, such as the Lorenz-84 [20] and the Lorenz-96 [21] models.
Even in the much simpler case of the Duffing equation

dx̂1

dt
= x̂2 and

dx̂2

dt
=−x̂1 − 5x̂3

1 −
x̂2

50
+ 8 cos

(
t
2

)
, (1.3)

we can have attractors with fractal structure and chaotic phase similarities [22]. This is clearly
illustrated in figure 1 where we plot the Poincaré sections of the two-dimensional phase space
at different times. Such sections are obtained by sampling 106 initial states from a zero-mean
jointly Gaussian distribution, and then evolving them by using (1.3). As the joint PDF of the phase
variables is, in general, a high-dimensional compactly supported distribution with a possibly
fractal structure, its numerical approximation is a very challenging task [15], especially in long-
time integration.

The statistical description of system (1.1) via the joint PDF equation (1.2), however, is often far
beyond practical needs. For instance, we may be interested only in the PDF of one component
of the system, e.g. x̂1(t), or in the PDF of a phase space function g(x̂). These quantities can be
obtained either by integrating out several phase variables from the solution to equation (1.2)
(e.g. equation (1.4)) or, more directly, by applying the projection operator method discussed
in subsequent sections. This may yield a low-dimensional PDF equation whose solution is more
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Figure 1. Complex structure of Poincaré sections of the phase space defined by equation (1.3) at different times. We sample 106

initial states from a zero-mean jointly Gaussian distribution with covariance C11 = C22 = 1
4 , C12 = 0. The joint PDF of x̂1 and

x̂2 closely follows the particles and its value is higher where the particle density is higher. Simple statistical properties such as
mean and variance are no longer sufficient to describe the stochastic dynamics in the long time.

regular than the one obtained by solving directly equation (1.2), and therefore more amenable
to computation. The regularization of the reduced-order PDF is due to multi-dimensional
integration (marginalization) of the joint response–excitation PDF.

Perhaps, the simplest method to determine reduced-order PDF equations relies on integrating
(1.2) with respect to different phase variables and then discarding surface integrals at infinity
in phase space. This yields a Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)-type hierarchy
[18] of equations for reduced-order distributions. The lowest order ones are (i= 1, . . . , n)

px̂i
(t, ai)=

∫∞
−∞
· · ·

∫∞
−∞

p(t)dai db, (1.4)

where dai = da1 · · ·dai−1 dai+1 · · ·dan and db= db1 · · ·dbm. These densities differ from those
used in classical BBGKY theory [23], mainly in that they are not necessarily symmetric under
interchanges of different phase space coordinates. For instance, px̂i

(t, ai) is not the same function
of ai that px̂j

(t, aj) is of aj, if i and j are different.1 Most of the added complexity to the classical
BBGKY theory stems from this lack of symmetry. A related approach, owing to Lundgren [24]
and Monin [25], yields a hierarchy of PDF equations involving suitable limits of reduced density
functions (see also [14,26,27]). The effective computability of both BBGKY-type and Lundgren–
Monin hierarchies associated with equation (1.2) relies on appropriate closure schemes, e.g. a
truncation of the hierarchy2 based on a suitable decoupling approximation of the joint PDF. For
example, the mean field approximation

p(t)= pξ (b)
n∏

i=1

px̂i
(t, ai) ∀ t≥ 0, (1.5)

where pξ (b) is the joint PDF of the random vector ξ , yields the system of conservation laws

∂px̂i
(t, ai)
∂t

=− ∂

∂ai
[px̂i

(t, ai)hi(t, ai)], i= 1, . . . , n (1.6)

and

hi(t, ai)
def=

∫∞
−∞
· · ·

∫∞
−∞

Gi(a, b, t)pξ (b)
n∏

j=1
j�=i

px̂j
(t, aj) daj db. (1.7)

1In the classical BBGKY framework, the phase coordinates of the systems are positions and momenta of identical particles.
Therefore, the reduced-order multi-point densities are invariant under interchanges of phase space coordinates of the same
type, e.g. positions or momenta.
2A low-order truncation of the BBGKY hierarchy for particle systems can be used to derive the Boltzmann equation [23].
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Equation (1.6) is coupled through the coefficients hi, which have to be computed on-the-fly by
using the available PDFs at time t. In the following, we consider a different approach to obtain
reduced-order PDF equations for quantities of interest. The approach is based on the Nakajima–
Zwanzig–Mori representation of irreversible processes [28,29].

This paper is organized as follows. In §2, we introduce the Nakajima–Zwanzig (NZ) projection
operator framework for quantities of interest and derive reduced-order PDF equations based on
multi-level coarse graining and operator cumulant resummation. In §3, we provide numerical
results obtained by applying the Nakajima–Zwanzig PDF (NZ-PDF) method to simple stochastic
systems. In particular, we study stochastic resonance driven by coloured random noise and
stochastic advection–reaction phenomena subject to high-dimensional random initial conditions
and random reaction rates. The main findings are summarized in §4. We also include Appendix
A where we discuss the approximation of the NZ-PDF equation in terms of non-commuting
operator cumulants.

2. Nakajima–Zwanzig projection operator framework
Introducing a time-independent pair of orthogonal projections P and Q such that P+ Q= I (identity
operator), we obtain from equation (1.2)

∂Pp(t)
∂t
= PL(t)[Pp(t)+ Qp(t)] (2.1)

and
∂Qp(t)

∂t
= QL(t)[Pp(t)+ Qp(t)], (2.2)

where we used the short-hand notation p(t) and L(t) for p(t, a, b) and L(t, a, b), respectively. We shall
refer to Pp(t) and Qp(t) as the ‘relevant’ and ‘irrelevant’ parts of the joint PDF p(t). We formally solve
equation (2.2) as

Qp(t)= G(t, 0)Qp(0)+
∫ t

0
G(t, s)QL(s)Pp(s) ds, (2.3)

where the operator G(t, s) (forward propagator3 of the orthogonal dynamics) is formally defined
by

G(t, s) def=←−T exp
[∫ t

s
QL(τ ) dτ

]
. (2.4)

In the last equation,
←−
T denotes the chronological time-ordering operator (latest times to the left).

A substitution of (2.3) into (2.4) yields the following equation, first derived by Nakajima [32],
Zwanzig [10,33] and Mori [34],

∂Pp(t)
∂t
= PL(t)Pp(t)+ PL(t)G(t, 0)Qp(0)+ PL(t)

∫ t

0
G(t, s)QL(s)Pp(s) ds. (2.5)

In the following, we will refer to equation (2.5) as the NZ-PDF equation. Convergence of Dyson or
Magnus series representations of the propagator (2.4) is granted only for short time [30]. For large
integration times, we can use the semigroup property of G and split the exponential operator into
a product of short-term propagators. An interesting feature of equation (2.5) is its ‘irreversibility’.
Roughly speaking, the projected distribution function Pp(t), initially in a certain subspace, leaks
out of this subspace so that information is lost. This yields the memory term (time convolution)
in equation (2.5).

Tokuyama & Mori [35] have shown how the NZ-PDF equation (2.5) can be transformed into
a time-convolutionless form, thus avoiding, at least formally, the memory term. This matter was
further discussed by several authors [36–38]. To derive the convolutionless form of the NZ-PDF

3The propagator G(t, s) is a linear operator (semi-group) that admits many different representations, for instance Magnus
series or Dyson series [30,31].
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equation, let us consider the formal solution (2.3) and replace p(s) with the solution to (1.2),
propagated backward from time t to time s≤ t, i.e.

p(s)= Z(t, s)p(t) and Z(t, s) def=−→T exp
[
−

∫ t

s
L(τ ) dτ

]
. (2.6)

In the latter definition,
−→
T denotes the anti-chronological ordering operator (latest times to the

right). Substituting (2.6) into (2.3) yields

Qp(t)= [I−Σ(t)]−1G(t, 0)Qp(0)+ [I−Σ(t)]−1Σ(t)Pp(t), (2.7)

where

Σ(t) def=
∫ t

0
G(t, s)QL(s)PZ(t, s) ds. (2.8)

Equation (2.7) states that the ‘irrelevant’ part of the PDF Qp(t) can, in principle, be determined
from the knowledge of the ‘relevant’ part Pp(t) at time t, and from the initial condition Qp(0). Thus,
the dependence on the history of the relevant part which occurs in the classical NZ-PDF equation
(2.5) has been formally removed by the introduction of the backward propagator (2.6). By using
the orthogonal dynamics equation (2.7), we finally obtain the Markovian (time-convolutionless)
NZ-PDF equation

∂Pp(t)
∂t
= K(t)Pp(t)+ H(t)Qp(0), (2.9)

where
K(t) def= PL(t)[I−Σ(t)]−1 and H(t) def= PL(t)[I−Σ(t)]−1G(t, 0). (2.10)

Other equivalent forms of the NZ-PDF equation, different than (2.5) and (2.9), can be derived
by using suitable ansatzes for the effective propagator of the system (see the electronic
supplementary material, S2).

So far, everything that has been said is exact and has led us to the equation of motion
(2.9), which is linear. Unfortunately, such equation is still of little practical use, because the
exact determination of the operators K(t) and H(t) is as complicated as the solution of equation
(1.2). However, the time-convolutionless form (2.9) is a convenient starting point to construct
systematic approximation schemes, e.g. by expanding K(t) and H(t) in terms of operator cumulants
relatively to suitable coupling constants [11,39–41] (see appendix A). We remark that the NZ
equations (2.5) and (2.9) and their discrete versions [29] have been extensively used in many
fields, e.g. quantum theory of dissipation [11], optimal prediction [28], nonlinear dispersive waves
in thermal equilibrium [42] and mesoscopic/atomistic particle methods [43,44].

(a) Multi-level coarse graining
The orthogonal projection operator Q= I− P can be decomposed further by introducing a new
pair of orthogonal projections P1 and Q1 such that P1 + Q1 = I. This allows us to split the governing
equation of the orthogonal dynamics (2.2) into the coupled system

∂P1Qp(t)
∂t

= P1QL(t)[Pp(t)+ P1Qp(t)+ Q1Qp(t)]

and
∂Q1Qp(t)

∂t
= Q1QL(t)[Pp(t)+ P1Qp(t)+ Q1Qp(t)].

Proceeding similarly, we can split the equation for Q1Qp(t) by using a new pair of orthogonal
projections P2 and Q2 satisfying P2 + Q2 = I. This yields

∂P2Q1Qp(t)
∂t

= P2Q1QL(t)[Pp(t)+ P1Qp(t)+ P2Q1Qp(t)+ Q2Q1Qp(t)]

and
∂Q2Q1Qp(t)

∂t
= Q2Q1QL(t)[Pp(t)+ P1Qp(t)+ P2Q1Qp(t)+ Q2Q1Qp(t)].

Obviously, we can repeat this process indefinitely to obtain a hierarchy of PDF equations, which
generalizes both the NZ as well as the BBGKY frameworks. The advantage of this formulation
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relatively to the classical NZ formulation relies on the flexibility we have in selecting the set
of projections P1, P2, etc. In particular, if the range of Pi is a low-dimensional manifold then the
average of an operator product where Pi appears to the left, e.g. P2Q1Q0p(t), represents a low-
dimensional quantity. Therefore, in this generalized framework, the joint PDF equation (1.2) is
not simply split into the ‘relevant’ and the ‘irrelevant’ parts by using P and Q, but the dynamics of
the irrelevant part is decomposed further in terms of an ensemble of projections. This allows us to
coarse-grain the orthogonal dynamics further in terms of low-dimensional quantities. Multi-level
coarse graining based on sequences of projections is closely related to the method of subdynamics
originally introduced by Prigogine et al. [45] (see also [46–48]). Such method has proved to be very
powerful for deriving kinetic equations in non-equilibrium statistical mechanics [49].

(b) Approximations to the Nakajima–Zwanzig probability density function equation
Most approximation schemes for NZ-PDF equations or BBGKY-type hierarchies rely on the
identification of some small quantity that serves as basis for perturbation expansion, e.g. the
particle density for Boltzmann equations [23], the coupling constant or correlation time for
effective Fokker–Planck equations [50–52], the Kraichnan absolute equilibrium distribution for
turbulent inviscid flows [18,53] (see also [54]) or high-order Fourier coefficients in semi-discrete
forms of PDEs [28]. One of the most stubborn impediments for the development of a general
theory of reduced-order PDF equations has been the lack of such readily identifiable small
parameters. Most of the work that has been done so far refers to the situation where the operator
L(t) in equation (1.2) can be decomposed as

L(t)= L0 + σ L1(t), (2.11)

where L0 depends only on the relevant variables of the system, σ is a positive real number
(coupling constant in time-dependent quantum perturbation theory) and the norm σ‖L1(t)‖
is somehow small. Note that this does not necessarily mean that σ is itself a small quantity.
In fact, the norm of L1(t) could be small as well, because of fast dynamics (small correlation
time processes) or other properties of the unresolved phase variables. By using the interaction
representation of quantum mechanics [30,31], it is quite straightforward to obtain from (2.9) and
(2.11) an effective closure approximation that is valid, e.g. for small noise, small correlation or
fast–slow dynamics. One way to do this is to expand the operators K(t) and H(t) in (2.10) in a
cumulant series, e.g. in terms of Kubo–Van Kampen operator cumulants [39–41,55] (see appendix
A). Any finite-order truncation of such series represents an approximation to the exact NZ-PDF
equation. In particular, the approximation obtained by retaining only the first two operator
cumulants is known as Born approximation in quantum field theory. We remark that from the point
of view of perturbation theory, the convolutionless form (2.9) has distinctive advantages over the
usual convolution form (2.5). In particular, in the latter case a certain amount of rearrangement is
necessary to obtain an expression which is correct up to a certain order in the coupling parameter
[56]. More recently, Chorin et al. [28,57] proposed various closure models to deal with situations
where there is no clear separation of scales between the resolved and unresolved dynamics.

(c) Quantities of interest and projection operators
Suppose that we are interested in the PDF of a phase space function g : R

n+1→R
l in the form

u(t)= g
(
x̂(t), t

)
, (Quantity of Interest) (2.12)

where x̂(t) is the stochastic process solving equation (1.1). For example, g could be the hyper-plane
defined by the series expansion of the solution to a SPDE, i.e.

u(t, x)=
n∑

j=1

x̂j(t)lj(x), (2.13)
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Figure 2. Reduced-order PDF dynamics of the Duffing system (1.3). Shown are non-parametric kernel density estimates [58] of
the PDF of x̂1(t) at the same times as in figure 1. The exact evolution equation of px̂1 (t) is (2.15). (Online version in colour.)

where lj(x) are spatial basis functions (x here are spatial coordinates). By using the NZ projection
operator framework, we can obtain the exact evolution equation for the PDF of any phase space
function in the form (2.12). The starting point is the Liouville equation for joint PDF of the state
variables u, x̂ and ξ , which is similar to equation (1.2), and can be derived by augmenting system
(1.1) with additional equations defining the time evolution of (2.12)

du
dt
= ∂g

∂t
+ ∂g

∂ x̂
·G

Now, let a ∈R
l and b ∈R

n+m be the sets of phase space coordinates corresponding, respectively,
to the relevant and the irrelevant variables of the augmented system. In this case, a corresponds
to u, while b corresponds to the pair (x̂, ξ ). Let p(t) the joint PDF of u, x̂ and ξ . We define the
orthogonal projection operator

Pp(t) def= ϕ(b)
∫∞
−∞
· · ·

∫∞
−∞

p(t) db, (2.14)

where ϕ is a multi-dimensional PDF with appropriate support4 in R
n+m. Clearly, P is an

orthogonal projection since, by the assumptions on ϕ(b), we have P2 = P. Note also that integrating
Pp(t) with respect to b yields the PDF of the quantity of interest (2.12)

pu(t)=
∫∞
−∞
· · ·

∫∞
−∞

Pp(t) db.

The corresponding evolution equation can be easily obtained by substituting the projection
operator (2.14) into equation (2.5) or (2.9), and then integrate with respect to b. Clearly, we have
a considerable freedom in selecting the projection operator P, i.e. the PDF ϕ(b). If the relevant
variables of the initial condition are separable from the irrelevant ones, i.e. if p(0)= pa(0, a)pb(0, b),
then an appropriate choice for ϕ(b) in (2.14) is the joint PDF of the irrelevant variables, i.e.
we can set ϕ(b)= pb(0, b). In this case, the joint PDF p(0) is in the range of P, i.e. Pp(0)= p(0).
This implies that the initial condition term in the NZ-PDF equation is identically zero since
Qp(0)= (I− P)p(0)= 0. In general, the joint PDF of the initial state is not separable. This happens,
for example, when we augment system (1.1) with additional equations for the quantities of
interest (2.12). In these cases, the projection operator (2.14) yields an initial condition term H(t)Qq(0)
in equation (2.9) that does not vanish, and therefore we have to take it into account, e.g. by using
operator cumulant series expansions. As an example, by applying the NZ-PDF framework to
equation (1.3), we obtain the following exact law governing the PDF of x̂1(t)5 (figure 2)

∂px̂1
(t)

∂t
=
[∫∞
−∞

L(t)[I−Σ(t)]−1px̂2
(0, a2) da2

]
px̂1

(t), (2.15)

4The distribution function ϕ(b) could be, for example, a uniform distribution in a domain B, i.e. ϕ(b)= 1/|B|, where |B| denotes
the volume of the set. It could also be a multivariate Gaussian distribution or the equilibrium distribution of the irrelevant
phase variables of the system.
5In this case, the mapping (2.12) is trivial and it reduces to g(x̂1, x̂2, t)= x̂1.
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Figure 3. Evidence of stochastic resonance. We study system (3.1) with parameters μ= 10, ν = 3, Ω = 2 and ε = 0.2
subject to weakly coloured random noise (τ = 0.01) of different amplitudes: (a) σ = 0.0; (b) σ = 0.2; (c) σ = 0.4 and
(d) σ = 0.8. Each plot shows only one solution sample. At the low values of the noise, the average residence time in the two
states is much longer than the driving period. However, if we increase the noise level to σ = 0.8 (c), then we observe almost
periodic transitions between the two meta-stable states. In most cases, we have a jump from one state to the other and back
again approximately once per modulation period.

where the integral is with respect to the PDF of x̂2(0) (assumed statistically independent of x̂1(0)),
Σ(t) was defined in (2.12) and the operators L(t) and P are, respectively

L(t) · =−a2
∂

∂a1
+ ∂

∂a2

[(
a1 + 5a3

1 +
a2

50
− 8 cos

(
t
2

))
(·)
]

and P· = px̂2
(0, a2)

∫∞
−∞

(·) da2.

We emphasize that it is rather difficult to determine a computable approximation to the exact
NZ-PDF equation (2.15). The main reason is that x̂1 and x̂2 in (1.3) have similar dynamical
properties and the same order of magnitude. This implies that it is not easy to integrate out the
dynamics associated with the phase variable x̂2, unless we have additional useful information. In
general, the problem of integrating out a one-phase variable from a two-dimensional nonlinear
system evolving from a random initial state is known as ‘Mori’s problem’ [59,60]. Unfortunately,
such problem does not have an easily computable solution [61].

3. Results and discussion
In this section, we provide numerical results obtained by applying the NZ-PDF approach to
simple stochastic systems. In particular, we study stochastic resonance driven by coloured
random noise and stochastic advection–reaction phenomena subject to high-dimensional random
initial conditions and random reaction rates.

(a) Stochastic resonance driven by coloured noise
In bistable systems, the cooperation between random noise and deterministic periodic signals of
small amplitude can yield a phenomenon known as stochastic resonance [62,63]. Roughly speaking,
random noise can enhance significantly the transmission of the deterministic signals, provided we
tune system’s parameters appropriately. The mechanism that makes this possible is explained in
figure 3, with reference to the system⎧⎪⎨

⎪⎩
dx̂(t)

dt
=−dU(x̂(t))

dx̂
+ σ f (t, ξ )+ ε cos(Ωt),

x̂(0)= x0(ω).
(3.1)

Specifically, the potential U(x̂) is assumed to be in the form

U(x̂) def= 1
1+ x̂2

(
−μ

x̂2

2
+ ν

x̂4

4

)
μ, ν > 0. (3.2)
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This function is a modification of the classical double-well potential [52,64] because it has
two symmetric minima at x̂1,2 =±

√√
1+ 2μ/ν − 1, a local maximum at x̂= 0 and it grows

quadratically as x̂→±∞. A similar system has been studied in [64,65] by using the unified
coloured noise approximation [66–69]. The small time-periodic (deterministic) signal ε cos(Ωt)
in (3.1) can be included in the potential U(x̂), yielding the time-dependent modulation

Ũ(x̂, t) def=U(x̂)− εx̂ cos(Ωt). (3.3)

Correspondingly, system (3.1) can be rewritten as dx̂(t)/dt=−∂Ũ(x̂, t)/∂ x̂+ σ f (t, ξ ). Modulation
(3.3) is at the basis of the stochastic resonance phenomenon, which is classically studied by using
white-noise excitation and Fokker–Planck theory [62]. Here, we employ the convolutionless NZ
approach to determine the evolution of the PDF of x̂(t) in the case where f (t, ξ ) in (3.1) is a zero-
mean Gaussian process with correlation function C(t, s). Specifically, we consider

(i) Exponentially correlated noise6

C(t, s)= 1
2τ

e−|t−s|/τ (τ is the noise correlation time) (3.4)

(ii) Fractional Brownian noise [70]

C(t, s)= 1
2

(|t|2h + |s|2h − |t− s|2h) 0 < h < 1 (Hurst index). (3.5)

In both cases, a Karhunen–Loève series expansion of f (t; ξ ) can be determined (e.g. [71]). In
particular, the Karhunen–Loève eigenvalue problem for the exponential correlation function
admit an analytical solution [72] (see the electronic supplementary material, S3.1).

The exact evolution equation for the PDF of x̂(t), denoted as px̂(t), can be obtained by applying
the convolutionless projection operator method of §2, with projection operator defined as

P· def= pξ (b)
∫∞
−∞
· · ·

∫∞
−∞

(·) db, (3.6)

pξ (b) being the joint PDF of the random vector ξ . Such NZ-PDF equation is a linear partial
differential equation involving derivatives of infinite-order. If we consider the Born approximation,
i.e. if we expand the propagator of px̂ in terms of Kubo–Van Kampen operator cumulants and
truncate the expansion at the second order (see appendix A), we obtain

∂px̂(t)
∂t
= L0px̂ − ε cos(Ωt)

∂px̂(t)
∂a
+ σ 2

[∫ t

0
C(t, s)

∂

∂a
e(t−s)L0 ∂

∂a
e(s−t)L0 ds

]
px̂(t), (3.7)

where

L0· def= ∂

∂a

[(
2μa− 2νa3 − νa5

2(1+ a2)2

)
(·)
]

. (3.8)

It can be shown that equation (3.7) is in the form of an advection–diffusion equation, with
diffusion coefficient that depends on the phase variable a as well as on time t (see the electronic
supplementary material, S3.3). The specific form of the diffusion coefficient has been the objective
of extensive investigation [13,52,73,74]. The rationale behind the Born approximation (3.7) is that
higher order operator cumulants can be neglected. This happens, in particular, if both ε and σ

are small. However when the noise is coloured, it is in general quite difficult to estimate the
magnitude of the contribution of higher order operator cumulants. For example, Faetti et al. [13]
have shown that for ε = 0 the correction to (3.7) due to the fourth-order cumulant is O(σ 4τ 2) for
exponentially correlated Gaussian noise (see eqn (4.18) in [13]). Note that if the noise correlation

6In the limit τ→ 0, f (t; ξ ) becomes Gaussian white noise with correlation function δ(t− s).
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Figure 4. Stochastic resonance simulation. Time snapshots of the PDF of x̂(t) as predicted by equation (3.7) (continuous lines)
and MC simulation (105 samples) (dashed lines). The Gaussian noise here is exponentially correlated with correlation time
τ = 0.1 and amplitude σ = 0.1 (a) and σ = 0.5 (b). The Karhunen–Loève series representation of such noise requires 280
Gaussian random variables to achieve 99% of the correlation energy in the time interval [0, 3]. (Online version in colour.)

time τ goes to zero (white-noise limit), then equation (3.7), with C(t, s) defined in (3.4), consistently
reduces to the classical Fokker–Planck equation.7

Next, we study the transient dynamics of px̂(t) within the time interval [0, 3]. To this end,
we consider the following set of parameters μ= 1, ν = 1, Ω = 10 and ε = 0.5, leading to a
slow relaxation to statistical equilibrium. This allows us to study the transient dynamics more
carefully and compare results with MC simulation. This is done in figure 4 for exponentially
correlated noise. There it is seen that random noise with very small amplitude does not influence
significantly the response of the system. In fact, the Gaussian ensemble of initial states is mainly
advected by the operator L0, yielding accumulation nearby the meta-stable states ±

√√
3− 1. For

larger noise amplitudes, the probability of switching between the meta-stable states increases
and therefore the strong bi-modality observed in figure 4a is attenuated. In figure 5, we study the
effects of the noise correlation time τ on the transient dynamics and compare results with MC.
It is seen that random noise with larger correlation time inhibits the switching rate between the
two meta-stable states. This means that stochastic resonance is suppressed with increasing noise
colour, in agreement with the findings of Hänggi et al. [65].

The response of system (3.1) to fractional Brownian motion of small amplitude can be computed
similarly, by substituting the non-stationary covariance function (3.5) into equation (3.7). The
numerical results are shown in figure 5c, where it is seen that fractional Brownian motion inhibits
stochastic resonance in a more pronounced way than exponentially correlated processes. Also,
larger Hurst indices induce larger diffusion effects in the PDF at later times.

The connection between the statistical properties of random noise and the structure of the
NZ-PDF equation can be further generalized to finite-amplitude perturbations (e.g. [75,76]).

7The proof is simple, and it relies on the limits

lim
τ→0

∫ t

0

1
2τ

e−s/τ ds= 1
2

and lim
τ→0

∫ t

0

1
2τ

e−s/τ sk ds= 0 k ∈N. (3.9)

In fact, these equations allow us to conclude that

lim
τ→0

∫ t

0

1
2τ

e−s/τ ∂

∂a
esL0

∂

∂a
e−sL0 ds= lim

τ→0

[∫ t

0

1
2τ

e−s/τ ds
]

∂2

∂a2 =
1
2

∂2

∂a2 , (3.10)

i.e. for τ→ 0, equation (3.7) reduces to the Fokker–Planck equation

∂px̂

∂t
= L0px̂ − ε cos(Ωt)

∂px̂

∂a
+ σ 2

2
∂2px̂

∂a2 . (3.11)
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Figure 5. Suppression of stochastic resonance with increasing noise colour. It is seen that as we increase the correlation time τ
from 0.01 (a) to 0.4 (b), the probability of switching between themeta-stable states±

√√
3− 1 decreases. This is evenmore

emphasized in figure (c), where we study stochastic resonance driven by fractional Brownian motion with Hurst index h= 0.1
and 0.6. (Online version in colour.)

(b) Stochastic advection–reaction
Let us consider the advection–reaction equation

∂u
∂t
+ V(x) · ∇u= [κ0(x)+ σκ1(x; ξ )]R(u), (3.12)

where V(x) is a deterministic velocity field, R(u) is a nonlinear reaction term and κ1(x; ξ ) is a zero-
mean random perturbation of the deterministic reaction rate κ0(x). In [77,78], we studied equation
(3.12) by using the joint response–excitation PDF method as well as the large-eddy-diffusivity
closure [79]. Here, we consider a different approach based on the NZ-PDF equation. To this end,
let us assume that σ in (3.12) is reasonably small and that the concentration field u is statistically
independent of κ1 at initial time. Under these hypotheses, by using the projection operator

P· def= pξ (b)
∫∞
−∞
· · ·

∫∞
−∞

(·) db (3.13)

and the perturbation analysis presented in appendix A, we obtain the following Born
approximation to the exact NZ-PDF equation for the concentration field (see the electronic
supplementary material, S4)

∂pu(t)
∂t
= L0pu(t)+ σ 2

[∫ t

0
〈κ1 esL0κ1〉 e−sL0 ds

]
F2pu(t), (3.14)

where

L0
def=−κ0(x)F− V(x) · ∇ and F def= ∂R(a)

∂a
+ R(a)

∂

∂a
, (3.15)

and the average 〈·〉 is defined to be a multi-dimensional integral with respect to the joint PDF
of ξ . In figure 6, we plot a few realizations of the concentration field solving equation (3.12) in
one-space dimension, where we have set

V(x)= 3
2
+ 1

2
esin(x)+cos(x)/2 − cos(x), (3.16)

κ0(x)= 3
2
− 2

5
(e− sin(x)/2 + cos(x)), (3.17)

R(u)= 1
20

(2e− ecos(2πu)2 − ecos(2πu)), (3.18)

κ1(x; ξ )= 1√
m

⎛
⎝ m∑

j=1

ξ
(1)
j (ω) sin(jx)+

m∑
j=1

ξ
(2)
j (ω) cos(jx)

⎞
⎠ (3.19)
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Figure 6. Stochastic advection–reaction. Samples of the concentration field for different number of dimensions in the initial
condition (3.20). Specifically, we consider m1 = 4 (a), 10 (b), 20 (c), 40 (d) 80 (e). The perturbation amplitude in the reaction
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Figure7. Stochastic advection–reaction simulation. Time snapshots of the concentrationPDFpredictedby theNZ-PDFequation
(3.14) (a) and PDF dynamics at x = 1 (b). Shown is the comparison between NZ-PDF solution and a non-parametric kernel
density estimation [58] of the PDF based on 103 MC samples. The zero-order approximation is obtained by neglecting the term
multiplying σ 2 in equation (3.14). We setm= 5 in the random reaction rate (3.17) (10 random variables) andm1 = 80 in the
initial concentration field (3.20) (160 random variables). (Online version in colour.)

and

u(x, 0; ζ )= 1
20

sin(x)+ 1
20
√

m1

⎛
⎝ m1∑

j=1

ζ
(1)
j (ω) sin(jx)+

m1∑
j=1

ζ
(2)
j (ω) cos(jx)

⎞
⎠ , (3.20)

where {ξ (i)
j } and {ζ (i)

j } being two sets of uncorrelated normal random variables. In figure 7, we
show the time snapshots of the PDF of the concentration field as predicted by the NZ-PDF
equation (3.14) and compare the results with MC simulation. We note that, in this case, the Born
approximation provides accurate results for a quite large degree of perturbation.
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4. Summary
We presented a general methodology to derive exact PDF equations for quantities of interest in
nonlinear stochastic dynamical system with parametric uncertainty. The key idea stems from
techniques of irreversible statistical mechanics, and it relies on defining suitable phase space
functions and corresponding projection operators, yielding formally exact reduced-order PDF
equations. The effective numerical simulation of such reduced-order PDF equations relies on
appropriate approximations. Most of the schemes proposed so far are based on the identification
of a small quantity that serves as a basis for perturbation expansion in terms of generalized
operator cumulants. Approximation of reduced-order PDF equations beyond perturbation is
still an open question. Any advancement in this direction would open the possibility to tackle
high-dimensional stochastic systems where the relevant and irrelevant phase variables have the
same order of magnitude and similar dynamical properties. There have been recent work in this
direction, e.g. by Chorin et al. [28,57] and Darve et al. [29], in the context of model reduction of
deterministic autonomous dynamical systems. In particular, various models such as the t-model
[80] and its renormalized version [81] have been proposed to deal with situations where there is
no clear separation of scales between the resolved and the unresolved dynamics.

Funding statement. This work was supported by OSD-MURI grant no. FA9550-09-1-0613, by DOE grant no.
DE-SC0009247 though the Collaboratory on Mathematics for Mesoscopic Modelling of Materials (CM4) and
NSF/DMS-1216437.

Appendix A. Operator cumulant approximation
Let us assume that the operator L(t) in equation (1.2) can be decomposed as

L(t)= L0 + σ L1(t), (A 1)

where L0 is a time-independent operator depending only on the relevant phase variables of
the system, while σ is a positive coupling constant, for example the amplitude of an external
random noise. In this case, we can integrate out exactly the dynamics associated with L0 first
so as to circumscribe the approximation problem to L1(t). This can be carried out by means
of a preliminary time-dependent transformation. In quantum mechanics, such transformation
corresponds to a new evolution picture, e.g. the interaction or the adiabatic picture [30,31,82]. In
particular, in the interaction picture, we first define the auxiliary field

q(t) def= e−tL0 p(t) (A 2)

and then rewrite equation (1.2) as

∂q
∂t
= σN(t)q(t) q(0)= p(0), (A 3)

where
N(t) def= e−tL0 L1(t) etL0 . (A 4)

By using the assumption that L0 depends only the relevant variables of the system (i.e. it commutes
with the projection P defined in (2.14), we have from (A 2)

∂Pp(t)
∂t
= L0Pp(t)+ etL0 ∂Pq(t)

∂t
. (A 5)

At this point, by following the same steps that led us to equation (2.9), we represent the evolution
of Pq(t) in terms of an exact convolutionless NZ equation

∂Pq(t)
∂t
= K̂(t)Pq(t)+ Ĥ(t)Qp(0), (A 6)

where
K̂(t) def= σ PN(t)[I− σΣ̂(t)]−1 (A 7)
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and
Ĥ(t) def= σ PN(t)[I− σΣ̂(t)]−1Ĝ(t, 0), (A 8)

and

Σ̂(t) def=
∫ t

0
Ĝ(t, s)QN(s)PẐ(t, s) ds, (A 9)

Ĝ(t, s) def=←−T exp
[
σ

∫ t

s
QN(τ ) dτ

]
(A 10)

and

Ẑ(t, s) def=−→T exp
[
−σ

∫ t

s
N(τ ) dτ

]
. (A 11)

Equations (A 6)–(A 11) can be used as a starting point of a perturbation theory.

(a) Perturbation series
Let us assume that the norm of the operator σN(t) appearing in (A 3) is small and expand the
generator (A 7) and the inhomogeneity (A 8) in the formal power series

K̂(t)=
∞∑

n=1

σ nK̂n(t) and Ĥ(t)=
∞∑

n=1

σ nĤn(t). (A 12)

To determine the operators K̂n and Ĥn, we first expand [I− σΣ̂(t)]−1 in equations (A 7)–(A 8) in a
Neumann series8 as

[I− σΣ̂(t)]−1 =
∞∑

k=0

σ kΣ̂(t)k. (A 13)

We also expand in power series both Σ̂(t) and Ĝ(t, 0) in equations (A 9) and (A 10)

Σ̂(t)=
∞∑

n=0

σ nΣ̂n(t) and Ĝ(t, 0)=
∞∑

n=0

σ nĜn(t). (A 14)

A substitution of (A 14) into (A 13) yields

[I− σΣ̂]−1 = I+ σΣ̂0 + σ 2[Σ̂1 + Σ̂2
0]+ · · · (A 15)

and
[I− σΣ̂]−1Ĝ= I+ σ [Σ̂0 + Ĝ1]+ σ 2[Σ̂2

0 + Σ̂1 + Ĝ2 + Σ̂0Ĝ1]+ · · · (A 16)

where the coefficients are obtained as

Σ̂0(t)=
∫ t

0
dt1QN(t1)P, (A 17)

Σ̂1(t)=
∫ t

0
dt1

∫ t1

0
dt2[QN(t1)QN(t2)P− QN(t2)PN(t1)], (A 18)

· · ·
Ĝ0(t)= I, (A 19)

Ĝ1(t)=
∫ t

0
dt1QN(t1) (A 20)

Ĝ2(t)=
∫ t

0
dt1

∫ t1

0
dt2QN(t1)QN(t2), (A 21)

· · ·
8The convergence radius of the Neumann series (A 13) is related to magnitude of σ‖Σ̂(t)‖, i.e. to the magnitude of σ‖N(t)‖
(see [83]).
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Finally, by substituting (A 14)–(A 21) into (A 7) and (A 8), we obtain the following coefficients of
the power series expansions (A 12):

K̂1(t)= PN(t), (A 22)

K̂2(t)=
∫ t

0
dt1[PN(t)N(t1)− PN(t)PN(t1)], (A 23)

K̂3(t)=
∫ t

0
dt1

∫ t1

0
dt2[PN(t)QN(t1)QN(t2)− PN(t)QN(t2)PN(t1)], (A 24)

· · ·
Ĥ1(t)= PN(t), (A 25)

Ĥ2(t)=
∫ t

0
dt1[PN(t)N(t1)− PN(t)PN(t1)+ PN(t)QN(t1)], (A 26)

Ĥ3(t)=
∫ t

0
dt1

∫ t1

0
dt2[PN(t)QN(t1)QN(t2)− PN(t)QN(t2)PN(t1)]

+
∫ t

0
dt1

∫ t1

0
dt2PN(t)QN(t1)QN(t2), (A 27)

· · ·
Any finite-order truncation of the series in (A 12) represents a closure approximation of the NZ
equation. In particular, the approximation obtained by retaining only the first two terms in the
expansion of K̂ and Ĥ is known as Born approximation in quantum field theory.

(b) Convergence
The series expansions we have considered so far are based on the hypothesis that the norm of the
operator σN(t) is somehow small. Although this is true in some instances, we cannot obviously
expect that such assumption is satisfied in general. In addition, the smallness of the norm σ‖N(t)‖
is not the only requirement for the convergence of the perturbation theory we have discussed so
far. In fact, we also have a finite radius of convergence (in time) in the Dyson and Magnus series
representations of the propagators (A 10) and (A 11).9 This issue can be overcome by using the
semigroup property of Ĝ and Ẑ. For example, Ĝ(tn, t0) can be represented as a superimposition of
short-term propagators, for which convergence is granted, i.e.

Ĝ(tn, t0)= Ĝ(tn, tn−1) · · · Ĝ(t2, t1)Ĝ(t1, t0). (A 28)

(c) Kubo–Van Kampen, Waldenfels and Speicher operator cumulants
Let U(t, s) be the forward propagator of the solution to equation (A 3), i.e.

q(t)= U(t, s)q(s) t≥ s≥ 0. (A 29)

Such propagator satisfies the operator equation

dU(t, s)
dt

= σN(t)U(t, s), U(s, s)= I. (A 30)

In many applications, the initial condition of the joint PDF p(0) is also separable, i.e. we have

p(0, a, b)= pa(0, a)pb(0, b), (A 31)

where a and b are the relevant and irrelevant phase variables of the system (pa and pb are,
respectively, the joint PDFs of the relevant and irrelevant variables of the system). This leads

9If L1(t) in equation (A 1) is time-independent then the propagators (A 10) and (A 11) are standard exponential operators for
which uniform convergence is granted on the whole real axis [83,84].
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us to a formal reduced-order solution to equation (A 5) in the form

pa(t, a)= etL0 〈U(t, 0)〉pa(0, a), 〈U(t, 0)〉 def=
∫∞
−∞
· · ·

∫∞
−∞

U(t, 0)pb(0, b) db. (A 32)

This equation defines the exact time dynamics of the relevant part of the joint PDF p(t, a, b) in terms
of the averaged (effective) propagator 〈U(t, 0)〉. Only rarely this operator can be calculated explicitly.
The tempting idea to average the terms of the Dyson series,

〈U(t, s)〉 = I+
∞∑

n=1

σ n
∫ t

s
dt1

∫ t1

s
dt2 · · ·

∫ tn−1

s
dtn〈N(t1) · · · N(tn)〉, (A 33)

is, in general, not appropriate if one needs 〈U(t, s)〉 for large (t− s). In fact, there appear the
so-called secular terms growing like (t− s)n if the nth-order correlation 〈N(t1) · · · N(tn)〉 does not
decay rapidly enough. As pointed out by Kubo [55,85], Hegerfeldt & Schulze [39] and Neu &
Speicher [41], this problem sometimes can be overcome by imposing an ansatz for 〈U(t, s)〉, in
particular a differential equation characterizing the evolution of the averaged propagator. This
yields a resummation of the various correlations appearing in equation (A 33), i.e. the introduction
of different types of operator cumulants. Known ansatzes are

〈U(t, s)〉
dt

= F(t, s)〈U(t, s)〉, (A 34)

〈U(t, s)〉
dt

= σ 〈N(t)〉〈U(t, s)〉 +
∫ t

s
A(t, τ )〈U(τ , s)〉dτ (A 35)

and

〈U(t, s)〉
dt

=
∞∑

n=0

∫ t

s
dt1

∫ t1

s
dt2 · · ·

∫ tn−1

s
dtnSn(t, t1, . . . , tn)〈U(t, t1)〉〈U(t1, t2)〉 · · · 〈U(tn, s)〉. (A 36)

It can be shown that (A 34) is equivalent to (A 33) if we choose

F(t, s)= σ 〈N(t)〉 +
∞∑

n=1

σ n+1
∫ t

s
dt1

∫ t1

s
dt2 · · ·

∫ tn−1

s
dtn〈N(t)N(t1)N(t2) · · ·N(tn)〉K, (A 37)

where 〈N(t)N(t1)N(t2) · · · N(tn)〉K are Kubo–Van Kampen (K-cumulants). By using the shorthand
notation 〈01 · · · k〉 = 〈N(t)N(t1) · · · N(tk)〉, the first three K-cumulants can be written as

〈N(t)〉K = 〈0〉, (A 38)

〈N(t)N(t1)〉K = 〈01〉 − 〈0〉〈1〉 (A 39)

and 〈N(t)N(t1)N(t2)〉K = 〈012〉 − 〈01〉〈2〉 − 〈02〉〈1〉 − 〈0〉〈12〉 + 〈0〉〈1〉〈2〉 + 〈0〉〈2〉〈1〉. (A 40)

Note that these cumulants coincide with those appearing in equations (A 22)–(A 24), if we define
the average as in (A 32) and we select the projection operator as

P(·) def= pb(0, b)
∫∞
−∞
· · ·

∫∞
−∞

(·) db. (A 41)

The second choice (A 35), introduced by Terwiel [56] (see also [39,55]), yields a solution in the
form (A 33) if we select

A(t, τ )= σ 2〈N(t)N(s)〉W +
∞∑

n=1

σ n+2
∫ t

τ

dt1

∫ t1

τ

dt2 · · ·
∫ tn−1

τ

dtn〈N(t)N(t1) · · · N(tn)N(τ )〉W (A 42)

where 〈N(t)N(t1)N(t2) · · · N(tn)〉W are Waldenfels cumulants (W-cumulants)

〈N(t)〉W = 〈0〉, (A 43)

〈N(t)N(t1)〉W = 〈01〉 − 〈0〉〈1〉 (A 44)
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and
〈N(t)N(t1)N(t2)〉W = 〈012〉 − 〈01〉〈2〉 − 〈0〉〈12〉 + 〈0〉〈1〉〈2〉. (A 45)

Note that differently from the K-cumulants, the W-cumulants are time-ordered (compare (A 38)–
(A 40) with (A 43)–(A 45)). The last ansatz (A 36), introduced by Neu & Speicher [41], yields
another type of cumulants, i.e. a specific class of non-crossing cumulants. All these representations
can be obtained by setting a specific ordering prescription in the definition of the propagator U(t, s)
[55,85,86]. This also justifies the existence of relations between different types of cumulants. It is
important to emphasize that all expansions we have discussed so far are completely equivalent
if we consider an infinite number of terms in the series. However, the convergence properties
of truncated series could be significantly different and could also lead to positivity problems [39,
p. 704].
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