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We study the Rayleigh–Bénard stability problem for a fluid confined within a square enclosure subject to
random perturbations in the temperature distribution at both the horizontal walls. These temperature
perturbations are assumed to be non-uniform Gaussian random processes satisfying a prescribed corre-
lation function. By using an accurate Monte Carlo method we obtain stochastic bifurcation diagrams for
the Nusselt number near the classical onset of convective instability. These diagrams show that random
perturbations render the bifurcation process to convection imperfect, in agreement with known results.
In particular, the pure conduction state does no longer exist, being replaced by a quasi-conduction
regime. We have observed subcritical and nearly supercritical quasi-conduction stable states within the
range of Rayleigh numbers Ra ¼ 0—4000. This suggests that random perturbations in the temperature
distribution at the horizontal walls of the cavity can extend the range of stability of quasi-conduction
states beyond the classical bifurcation point Rac ¼ 2585:02. Analysis of the stochastic bifurcation dia-
grams shows the presence of a stochastic drift phenomenon in the heat transfer coefficient, especially
in the transcritical region. Such stochastic drift is investigated further by means of a sensitivity analysis
based on functional ANOVA decomposition.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The classical stability theory of Rayleigh–Bénard convection in
an infinite layer of fluid confined between two horizontal isother-
mal walls with constant but unequal temperatures predicts that
the amplitude of the motion undergoes a bifurcation as the Ray-
leigh number passes through the critical value Rac ¼ 1707:8 (see,
e.g., [1,2]). Such bifurcation characterizes the transition between
a pure conduction state and convection. If the flow is laterally con-
fined by rigid and perfectly insulating sidewalls then the critical
Rayleigh number usually increases [3–6] due to the stabilizing ef-
fects of a finite geometry. Furthermore, if there is a small heat
transfer through these sidewalls so that the boundary conditions
are inconsistent with a state of no motion, then the bifurcation
leading to convection is replaced by a smooth transition to finite
amplitude flow [7]. Such smooth transition has been also predicted
theoretically for thermal convection in an infinite fluid layer con-
fined between two rigid horizontal walls with different mean tem-
peratures and small spatially periodic perturbations [8].

Considerable research effort has focused on examining the sta-
bility of different types of natural convective flows subject to
deterministic boundary conditions [9,5,10–12] (see also the inter-
esting recent study [13]). However, not as much work has been
done for the case when the boundary conditions are random
ll rights reserved.
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processes of finite amplitude, although these results would bear
upon the importance of ignoring uncertainty when applying classi-
cal stability results in real situations, both in laboratory experi-
ments and elsewhere.

Thus, the purpose of the present paper is to examine the effects of
temperature perturbations on the classical Rayleigh–Bénard stabil-
ity problem, namely an unstably stratified fluid contained between
two smooth horizontal walls with different mean temperatures. In
particular, we will study the prototype problem of a square enclo-
sure having perfectly insulating lateral sidewalls and determine
how the random perturbations in the temperature distributions at
the horizontal walls affect the stability and the branch points ob-
tained from classical bifurcation analysis. Clearly, when no temper-
ature variations occur along the boundaries convection is possible
only when the Rayleigh number is greater than the classical critical
value Rac ¼ 2585:02 [6,5,14]. However, when random temperature
variations do occur at the horizontal walls, the bifurcation process
leading to convection becomes imperfect [15] and the subcritical
pure conduction state does no longer exist, being replaced by a
quasi-conduction regime [8]. This type of flow is characterized by a
finite – though perhaps very small – velocity field and it can be
observed even at low values of the Rayleigh number.

Many important questions can be addressed in the context of
stochastic thermal convection driven by random boundary condi-
tions. For instance: how do the random temperature perturbations
affect stability and branch points obtained from classical bifurcation
analysis? Is there any connection between the stochastic properties
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of the temperature perturbations – such as correlation length and
amplitude – and flow stability? Is there a preferential correlation
length enhancing the fluid motion and the heat transfer? Is it possi-
ble to obtain realizations of stable supercritical quasi-conduction
states? In this work we will provide an answer to all these questions
by employing a Monte Carlo numerical approach [16,17].

This paper is organized as follows. In Section 2 we formulate the
governing equations of the system, i.e., the Oberbeck–Boussinesq
approximation to convection via the vorticity transport equation
[18,19]. In Section 3 we characterize the random temperature per-
turbations at the horizontal walls of the cavity in terms of
Karhunen–Loève expansions satisfying a prescribed Gaussian
correlation function. In Section 4 we investigate the effects of these
perturbations – parametrized in terms of their correlation length
and amplitude – on the onset of convective instability and we
determine useful stochastic bifurcation diagrams for the Nusselt
number near the onset. The existence of supercritical quasi-
conduction states is discussed in Section 5. By using the ANOVA
method [20–23], in Section 6 we study the sensitivity of the inte-
grated Nusselt number with respect to variations in the amplitude
of different harmonics appearing in the random boundary condi-
tions. This allows us to identify the most effective spatial frequency
in the temperature distributions at the horizontal walls enhancing
the heat transfer coefficient. Finally, the main findings and their
implications are summarized in Section 7. We also include two
brief appendices dealing with the Galerkin discretization of the
Oberbeck–Boussinesq equations and the description of the ANOVA
technique for sensitivity analysis, respectively.

2. Governing equations

Let us consider the Rayleigh–Bénard stability problem for a fluid
confined within a square enclosure heated from below and cooled
from above and subject to random perturbations in the tempera-
ture distribution at both the horizontal walls. The lateral sidewalls
are assumed to be perfectly insulating (see Fig. 1). We assume that
the flow can be described in terms the dimensionless Oberbeck–
Boussinesq approximation written as a vorticity transport equation
in streamfunction-only formulation
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Fig. 1. Schematic of the dimensionless geometry and dimensionless temperature
boundary conditions. The random perturbations g1 and g2 are assumed to be zero
mean Gaussian processes. The velocity boundary conditions are of no-slip type, i.e.,
w = @w/@x = @w/@y = 0 at the solid walls.
This system is supplemented with the boundary conditions

w ¼ 0;
@w
@x
¼ 0;

@w
@y
¼ 0; ð3Þ

along all the sidewalls of the cavity as well as

T ¼ 1þ g1ðx;xÞ; y ¼ 0; 0 6 x 6 1; ð4Þ
T ¼ g2ðx; xÞ; y ¼ 1; 0 6 x 6 1; ð5Þ
@T
@x
¼ 0; x ¼ 0; 0 6 y 6 1; ð6Þ

@T
@x
¼ 0; x ¼ 1; 0 6 y 6 1: ð7Þ

In the equations above w(x,y;x) and T(x,y;x) denote the ran-
dom streamfunction and temperature fields while Ra and Pr are
the Rayleigh and the Prandtl numbers, respectively. The variable
x appearing in w(x,y;x) and T(x,y;x) identifies a possible out-
come of the streamfunction and the temperature for a specific real-
ization of the random temperature perturbations g1(x,x) and
g2(x,x) at the horizontal walls. A rigorous mathematical definition
of these perturbations will be given in the subsequent section.

All quantities in Eqs. (1)–(7) have been made dimensionless by
scaling lengths with the side length of the cavity L, streamfunction
with the kinematic viscosity m, time with L2/m and temperature
with a reference temperature difference Dhr which is defined to
be the difference between the averages of the two temperature
processes at the horizontal walls.1 With this rescaling, the Rayleigh
and the Prandtl numbers are obtained as

Ra ¼ gbL3Dhr

am
; Pr ¼ m

a
; ð8Þ

where g, b and a are the acceleration of gravity, the isobaric com-
pressibility coefficient and the thermal diffusivity of the fluid,
respectively. We notice, that this type of adimensionalization is
not effective when the average temperature is the same along the
two horizontal walls. In fact, in this case the reference temperature
difference Dhr becomes 0 but we still could have convection due to
temperature variations at the boundaries. This case will not be con-
sidered in the present study. At this point, it is convenient to trans-
form the non-homogeneous temperature boundary conditions into
homogeneous ones. This is achieved by defining the new field

T�ðx; y;xÞ ¼def Tðx; y;xÞ þ ðy� 1Þðg1ðx; xÞ þ 1Þ � yg2ðx;xÞ; ð9Þ

where g1(x;x) and g2(x;x) are random processes satisfying adia-
batic boundary conditions at x = 0 and x = 1, i.e.,
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Eq. (9) can be inverted as

T ¼ T� þ ð1� yÞðg1 þ 1Þ þ yg2: ð11Þ

From Eq. (11) we obtain
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Finally, a substitution of Eqs. (12)–(14) into Eqs. (1) and (2), respec-
tively, yields the system
1 The dimensionless temperature field is defined as T ¼ ðh� hcÞ=Dhr where hc

denotes the average of random temperature distribution at the upper horizontal wall.
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The boundary conditions associated with Eqs. (15) and (16) are
now homogeneous. In Appendix A we obtain the Galerkin discret-
ization of this system in terms of eigenfunctions of proper eigen-
value problems.

3. Characterization of temperature perturbations at the
horizontal walls

We shall assume that the temperature perturbations g1ðx;xÞ
and g2ðx;xÞ are zero mean random processes satisfying adiabatic
boundary conditions at x = 0 and x = 1. In order to represent these
processes, let us first consider a suitable orthonormal basis ob-
tained from the classical Sturm–Liouville eigenvalue problem
[24,25]

d2/

dx2 þ a2/ ¼ 0; with
d/ð0Þ

dx
¼ d/ð1Þ

dx
¼ 0: ð17Þ

The normalized eigenfunctions solving (17) are

/0ðxÞ ¼ 1; /nðxÞ ¼
ffiffiffi
2
p

cosðnpxÞ n ¼ 1;2;3; . . . ð18Þ

Thus, if hðx;xÞ is a zero-mean process satisfying adiabatic boundary
conditions at x = 0 and x = 1, then we have the following spectral
representation2 [26]

hðx; xÞ ¼ r
X1
k¼1

akðxÞ/kðxÞ; ð19Þ

where r is a real parameter that characterizes the amplitude of the
process while

akðxÞ ¼
1
r

Z 1

0
hðx;xÞ/kðxÞdx ð20Þ

are pairwise uncorrelated random variables. The covariance of the
process h(x;x) has the obvious representation

Cðx; x0Þ¼def hhðx;xÞhðx0; xÞi
r2 ¼

X1
n¼1

ha2
ni/nðxÞ/nðx0Þ; ð21Þ

where h�i denotes the average with respect to the joint probability
measure of the variables {ak(x)}. An important question at this
point is: if we arbitrarily prescribe a covariance function, say C⁄(x,y),
can we determine a set of uncorrelated random variables a�kðxÞ
such that (21) is satisfied? The answer is obviously affirmative, pro-
vided the prescribed covariance satisfies the boundary conditions
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¼ 0; 8y 2 ½0;1�; ð22Þ

as well as the zero-mean constraintZ 1

0
C�ðx; yÞdx ¼ 0; 8y 2 ½0;1�: ð23Þ
2 Note that all the basis functions /k(x) (except /0) integrate to zero and satisfy
adiabatic boundary conditions at x = 0 and x = 1.
If C⁄(x,y) does not satisfy such conditions then it is possible to en-
force them through projection. To this end, let us first consider
the (positive) Fourier coefficients

hb2
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0
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obtained by projecting the arbitrarily prescribed kernel C⁄(x,x0) onto
the basis {/k}. This operation basically removes every spatial gradi-
ent at the boundaries x = 0 and x = 1 and it makes the assigned cor-
relation zero spatial mean, in the sense of (23). Next, let us consider
the spectral expansion of the kernel C⁄(x,x0) in terms of its (positive)
eigenvalues kk and eigenfunctions wk

C�ðx; x0Þ ¼
X1
k¼1

kkwkðxÞwkðx0Þ: ð25Þ

A substitution this expression into (24) immediately yields
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At this point it is easy to check that if {nk(x)} is any set of zero-mean
and uncorrelated random variables with unit variance (i.e., hn2

ki ¼ 1)
then the process

hðx;xÞ ¼ r
X1
k¼1

hb2
ki

1=2nkðxÞ/kðxÞ ð27Þ

satisfies the adiabatic boundary conditions at x = 0 and x = 1 as well
as the zero spatial mean constraint and it has the following
covariance

eC �ðx; x0Þ ¼X1
n¼1

hb2
ni/nðxÞ/nðx0Þ: ð28Þ

The technique just discussed can be considered as particular case of
the spectral transformation method [27,28] where an assigned corre-
lation kernel is generated by assigning the spectrum relatively to a
specified orthogonal basis. In this paper we will employ the follow-
ing Gaussian covariance (see [29])

C�ðx; x0Þ ¼ exp �6
ðx� x0Þ2

l2
c

" #
: ð29Þ

This allows us to represent the temperature perturbations g1 and g2

as the following Karhunen–Loève expansions

giðx;xÞ ¼ r
XM

k¼1

hb2
ki

1=2nðiÞk ðxÞ/kðxÞ; i ¼ 1;2; ð30Þ

where nðiÞk ði ¼ 1;2; k ¼ 1;2; . . . ;MÞ are zero-mean uncorrelated
Gaussian random variables with unit variance. Several samples of
the processes (30) are shown in Fig. 2(b) for different correlation
lengths lc and perturbation amplitude r set at 5% of the reference
temperature difference between the horizontal walls. Physically,
this means a temperature perturbation with amplitude 1 K for tem-
perature differences of about 20 K. We remark that the truncation
process in the series expansion (30) has to be performed with some
care, in such a way that the energy of the neglected modes is actu-
ally negligible. To this end, we examine the relative energy of the
temperature perturbations

ef ðMÞ¼
def Ef ðMÞ

Ef ð1Þ
; where Ef ðMÞ¼

defXM

n¼1

hb2
ni ð31Þ

and choose the total number of terms M in such a way that ef is
greater than a specified cutoff value. In Fig. 2(a) we show the plots
of ef(M) corresponding to different dimensionless correlation
lengths while in Table 1 we report on the dimensionality M – i.e.,
the total number of terms – of the spectral representation (30) for



Fig. 2. (a) Relative energy of a truncated Karhunen–Loève expansion of the
temperature processes at the horizontal walls as a function of the number of terms
retained in the representation for different correlation lengths (all symbols are
defined in Eqs. (29)–(31)). We also show the relative energy cutoff set at 95%
(dashed line). (b) Samples of temperature perturbations at lower and upper
horizontal walls for correlation lengths lc = 1 (--), lc = 0.5 (-�) and lc = 0.1 (-). The
perturbation amplitude r here is set at 5% of the reference temperature difference.

Table 1
Effects of correlation length lc on the dimensionality M of the temperature
representation at each horizontal boundary. The energy cutoff is set at 95% of the
total energy of the process.

lc 1 2 1 0.5 0.25 0.1 0.05 0.025 0.01
M 1 2 3 5 9 22 44 87 199
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a 95% cutoff threshold. We notice that as the correlation length goes
to zero the temperature perturbation at the horizontal walls ap-
proaches an independent increment process [30]. Even for temper-
ature perturbations having correlation length lc about 0.1 (scaled on
the side length of the cavity) the number of expansion terms M be-
comes relatively large. Specifically, since we have two random
boundaries, the case lc = 0.1 results in a stochastic system forced
by 44 (22 + 22) random variables (see Table 1). The simulation of
these high-dimensional systems requires appropriate numerical
techniques [23,31–37] (see also [38]). In this work we will employ
a Monte Carlo method but also polynomial chaos with adaptive
ANOVA can be used [22].

In the following sections, unless explicitly stated, the perturba-
tion amplitude r of the temperature processes (30) is set at 5% of
the reference temperature difference.

4. Stochastic bifurcations and stability of steady state
convection

In previous work [6] we have obtained bifurcation diagrams for
natural convective flows within square cavities subject to uniform
temperature boundary conditions. We have observed the coexis-
tence of multiple stable steady states, in agreement with recent re-
sults [12,11,10,9], for fixed values of Rayleigh and Prandtl
numbers. The time-asymptotic steady state was found to be
dependent on the initial flow condition. In the presence of random
temperature perturbations at the horizontal walls of the cavity,
multiple stable states can still coexist, but the mechanism of their
formation is substantially different from the uniform boundary
condition case. Indeed, as we can see from Eqs. (15) and (16), the
random perturbations g1 and g2 break the symmetry of the system,
i.e., the steady-state convection pattern do not satisfy, in general,
the discrete symmetry group described in [6]. Therefore, the sym-
metry-induced multiplicity of supercritical states in this case is re-
placed by a more physical ensemble of flows in a one-to-one
correspondence with specific boundary and initial conditions.3
3 We remark that for very specific realizations of the temperature processes at the
horizontal walls, convection can still satisfy the discrete symmetry group described in
[6]. However, from a statistical viewpoint the probability that this happens is actually
zero.

4 We report only on stable steady states. Other unstable states are present as well,
but these are not shown in Fig. 4.
We have identified many different steady-state stable convection
patterns and corresponding temperature fields. These include sub-
critical and supercritical quasi-conduction states for which the kinetic
energy of the flow turns out to be very small. In Fig. 3 we show typ-
ical temperature fields and flow patterns corresponding to specific
realizations of the temperature boundary conditions.
4.1. Bifurcation diagrams for the Nusselt number

As is well known, a sudden change in the slope the Nusselt
number versus the Rayleigh number usually identifies a transition
between different flow states. In the particular case of uniform
temperature boundary conditions the first one of these transitions
characterizes the onset of convective instability [12,5] and, for
the geometry shown in Fig. 1, it can be clearly identified at
Rac = 2585.02. However, in the presence of random temperature
perturbations along the horizontal walls of the cavity, the precise
determination of the critical Rayleigh number can be rather diffi-
cult. In fact, as pointed out by Ahlers et al. in [15], such perturba-
tions render the bifurcation process to convection imperfect and,
strictly speaking, a critical Rayleigh number does not even exist
in the usual sense since convection occurs for all values of Ra.
However, as the Rayleigh number approaches the classical critical
value, the amplitude of convection increases greatly, and therefore
it still makes sense to define a ‘‘critical’’ regime near the classical
onset.

In Fig. 4 we show the bifurcation diagrams for the integrated
Nusselt number

NuðxÞ¼def
Z 1

0

@Tðx; y;xÞ
@y

����
y¼0

dx; ð32Þ

versus the Rayleigh number. These diagrams are obtained by first
sampling the temperature distribution at the horizontal walls for
different perturbation amplitudes and correlation lengths and then
compute the corresponding stable4 convective flow through the
Galerkin method outlined in Appendix A. Thus, most of the bifurca-
tion diagrams shown in this section are not obtained through contin-
uation but rather through random sampling. The main reason why
we decided to follow this approach is that in this way we do not
need to perform continuation for each specific realization of the ran-
dom boundary conditions. Given the fact that we consider an ensem-
ble of 105 realizations for each correlation length and perturbation
amplitude, it is easy to understand that a standard continuation ap-
proach would not be viable in practice. In the plots of Fig. 4 we also
include the classical bifurcation diagram for deterministic uniform
boundary conditions (dashed lines). This case has been obtained
by using continuation techniques [6]. Specifically, the continuation
algorithm employed to track steady states uses a prediction-correc-
tion scheme based on the Moore–Penrose matrix pseudoinverse.
Mathematical details may be found in [39] (see also [40]).

Note that the bifurcation diagrams obtained for temperature
perturbations with correlation lengths lc = 1 and lc = 0.5 are very
similar. This can be explained by noting that the temperature per-
turbations at the horizontal walls of the cavity are quite similar to
each other in these cases (see Fig. 2(b)). Among many possible con-
vection patterns, our numerical results show that it is possible to
obtain realizations of nearly supercritical (stable) quasi-conduction
states. In other words, it seems that random perturbations can sta-
bilize the quasi-conduction state beyond the classical bifurcation
point. This rather surprising result will be discussed further in
the next section.
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Fig. 3. Typical temperature fields (top row) and streamlines of the velocity field superimposed to the modulus of velocity (lower row) for specific realizations of the
temperature distribution at the horizontal walls of the cavity. The correlation length of the temperature perturbations at the horizontal walls is set to lc = 0.1 (a), lc = 0.5 (b)
lc = 0.25 (c). Show are: (a) a subcritical quasi-conduction state at Ra = 1946, (b) a supercritical quasi-conduction state Ra = 2650 and (c) a fully developed one-roll convection
pattern at Ra = 3500.
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4.2. Statistical analysis of the heat transfer

In Fig. 5(a) we plot the probability density function of the inte-
grated Nusselt number at Rayleigh number 3000 and Prandtl
number 0.7 for boundary perturbations with different correlation
lengths. Each probability density is estimated by using a non-
parametric kernel regression method based on the available
temperature samples. Specifically, we have computed 105 flow sam-
ples for each selected Rayleigh number, correlation length and
amplitude of the temperature perturbations at the horizontal walls.

As it is seen from Fig. 5(a), these random perturbations can in-
crease or decrease the global heat transfer relatively to the uniform
case. In the mean sense, however, it turns out that the heat transfer
is enhanced, especially in the transcritical region (see Fig. 6). Sim-
ilarly, in Fig. 5(b), we plot the probability density functions of the
integrated Nusselt number at different Rayleigh numbers for
boundary perturbations with correlation length lc = 0.5. We notice
that at Ra = 1000 the probability density of Nu is rather peaked
around Nu = 1, suggesting a high probability of quasi-conduction
regime. In the transcritical region we also observe a variation of
the probability density function that becomes approximately Gauss-
ian when convection is fully developed. Note also that for super-
critical flows, the probability density of the integrated Nusselt
number is continuously supported. This suggests that for the corre-
lation lengths and the perturbation amplitudes considered in this
paper it seems that there exist only one possible supercritical con-
vection pattern, i.e., a one-roll flow. In other words, the ensemble
of stable flows is continuous and composed by one-roll patterns,
with the exception of some subcritical quasi-conduction states.

Next, we determine the average and the range of the integrated
Nusselt number as a function of the Rayleigh number for different
correlation lengths. This study helps us in clarifying if the correla-
tion length of the temperature perturbations at the horizontal
walls has an influence on the averaged heat transfer within the
cavity. The results of our computations are shown in Fig. 6(a). As
easily seen, random temperature perturbations induce a stochastic
drift in the transcritical region yielding to an increment of the aver-
age heat transfer. This increment depends on the correlation length
of the temperature processes, i.e., there are preferential values of
temperature correlation lengths that trigger convection patterns
that are more effective for what concerns the heat transfer. Note,
however, that the heat transfer enhancement is rather weak in
all cases we have considered, quantifiable in approximately 10%
within the transcritical region. Also, when convection is fully
developed the stochastic drift disappears and the probability den-
sity of the integrated Nusselt number becomes very similar to a
Gaussian distribution (see Fig. 5(b)).

It is interesting to study the relation between the integrated
Nusselt number and the dimensionless kinetic energy of the fluid
in more detail. Our first finding is that the correlation coefficient
between these two quantities is approximately one in all cases
we have considered in this paper. This suggests that there exist a
linear relation between the Nusselt number and dimensionless ki-
netic energy of the fluid at Prandtl number 0.7. This relation is
shown in Fig. 6(b) where we plot the integrated Nusselt number
versus the kinetic energy of the fluid for different Rayleigh num-
bers. The existence of a linear relation between the integrated Nus-
selt number and the dimensionless kinetic energy implies that heat
transfer is primarily determined by advection, even in the quasi-
conduction regime.
5. Subcritical and supercritical quasi-conduction states

The existence of subcritical quasi-conduction states has been
theoretically predicted by Kelly and Pal in [8] for an infinite layer
of fluid with small periodic temperature variations at the horizontal
walls. By means of perturbation analysis, they have found that
convection can occur even for Rayleigh numbers less than the criti-
cal one (Rac = 1707.8 for the infinite layer). The corresponding Nus-
selt number was found to be a function of the Rayleigh number, the
Prandtl number and the modulation amplitude. The perturbation
approach of Kelly and Pal, however, cannot be easily extended to
the present flow problem because of the random boundary condi-
tions. In fact, these processes could depend on many random
variables (see Table 1) and therefore it is not easy to select a



Fig. 4. Bifurcation diagrams near the onset of convective instability for random perturbations in the temperature distribution at the horizontal walls of the cavity. Shown are
samples of the integrated Nusselt number versus the Rayleigh number corresponding to different choices of the correlation length (lc) and the perturbation amplitude (r) of
the temperature boundary processes. The dashed line in each plot represents the classical bifurcation diagram obtained for deterministic, spatially uniform, temperature
conditions. The critical Rayleigh number, in this case, is Rac = 2585.02 (see [6,5]).
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significant perturbation parameter quantifying the ‘‘amplitude of
convection’’.5 A criterion to identify a quasi-conduction state may
be based on the analysis of the dimensionless temperature field
within the cavity. In particular, a comparison between the pure con-
duction solution and the convection solution can reveal if there is a
significant temperature transport associated with the fluid motion.
We recall that the steady-state pure conduction solution can be
obtained by integrating the Poisson’s equation

r2T� ¼ �y
@2g2

@x2 �
@2g1

@x2

 !
� @

2g1

@x2 ð33Þ

for homogeneous boundary conditions (T⁄ = 0 at the horizontal
walls and @T⁄/@x = 0 at the sidewalls of the cavity), and then using
Eq. (11).

A simpler criterion to identify a quasi-conduction regime is
based on the integrated Nusselt number itself. In practice, we
5 From a theoretical viewpoint, a supercritical stable state might be investigated by
analyzing the Oberbeck–Boussinesq system, in any representation. In particular, one
can consider the Galerkin discretization obtained in Appendix A, expand the solution
near ak � 0 and bk � 0 and try to determine whether there exist a set of coefficients
for which the real part of the largest Jacobian eigenvalue is negative. This leads to a
complex relation between the forcing (buoyancy) term in the Navier–Stokes equation
and the Rayleigh number.
can define a threshold for Nu below which we can state that con-
vection is neglectable. At Prandtl number 0.7, this is equivalent
to selecting a threshold for the dimensionless kinetic energy of
the fluid. In fact, as we have pointed out in the previous section,
the integrated Nusselt number and the dimensionless kinetic en-
ergy of the fluid are extremely well correlated in all cases we have
considered in this paper. The selection of a threshold value for the
integrated Nusselt number obviously introduces some arbitrari-
ness in the definition of quasi-conduction states. This arbitrariness,
however, is of the same type as that of defining a critical Rayleigh
number in presence of random boundary conditions.

Given these remarks, let us set the threshold Nutr = 1.02 for qua-
si-conduction states. This choice is based on the analysis of many
different realizations of subcritical flows where the temperature
field is not significantly transported by the velocity field. In these
conditions we have found the Nusselt number rarely exceeds the
value 1.02. The selected threshold Nutr = 1.02 discriminates among
those flows whose heat transfer differs at most by 2% with respect
to pure conduction. In Fig. 7 we sketch the graphical procedure for
the identification of quasi conduction-states according to the pro-
posed criterion. An analysis of the stochastic flow field near the on-
set of convection reveals that random temperature perturbations
at the horizontal boundaries can stabilize a nearly supercritical qua-
si-conduction regime. This region is indicated in Fig. 7(b) for



Fig. 5. (a) Probability density functions of the integrated Nusselt number at
Rayleigh number Ra = 3000 for boundary perturbations of different correlation
lengths. The vertical line indicates the deterministic Nusselt number at Ra = 3000
corresponding to uniform boundary conditions. (b) Probability density functions of
the integrated Nusselt number at different Rayleigh numbers for lc = 0.5: Ra = 1000
(--), Ra = 2500 (� � �), Ra = 3000 (-) and Ra = 4000 (-�-). Figure (c) is a zoom-in of
figure (b).

Fig. 6. (a) Mean of the integrated Nusselt number versus the Rayleigh number for
boundary perturbations of different correlation lengths. (b) Integrated Nusselt
number versus the dimensionless kinetic energy (ec) of the fluid at Prandtl number
0.7. The correlation length of the temperature perturbations is set to lc = 1. We show
the mean (� � �) and the min–max band (-), which is parametrized with the Rayleigh
number Ra. The curves at constant Ra (- -) are simple straight lines due to the very
high correlation coefficient between Nu and ec at Prandtl number 0.7.
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boundary perturbations having correlation length lc = 0.5. Thus,
random perturbations can extend the domain of stability of qua-
si-conduction states beyond the classical bifurcation point. In
Fig. 3(b) we show one of these states at Rayleigh number 2650.
An important question at this point is: What is the probability that
a supercritical stable quasi-conduction state develops within the
cavity?

In order to answer this question, in Fig. 8 we plot the probability
of occurrence of quasi-conduction states within the whole range of
Rayleigh numbers considered in this paper, for boundary perturba-
tions of different correlation lengths. This probability function is
estimated by counting the relative number of quasi-conduction
states, i.e., the states whose energy is within the quasi-conduction
energy band. As easily seen, the probability curve is monotonic and
it reaches the value zero (impossible event) approximately at
Ra ’ 2800 in all cases. We also notice that the occurrence of a
nearly supercritical quasi-conduction state is rather unlikely (see
Fig. 8(b)) and it weakly depends on the correlation length of the
temperature perturbations at the horizontal walls. In particular,
smaller correlation lengths yield higher probabilities of supercriti-
cal quasi-conduction states. Clearly, all these results depend on the
choice of the quasi-conduction energy band. In other words, a dif-
ferent selection of the threshold for the integrated Nusselt number
or the kinetic energy of the fluid could yield quantitatively differ-
ent but qualitatively similar conclusions. In particular, if we in-
crease the threshold level for the Nusselt number above 1.02 we
obtain a translation to the right of all the curves plotted in Fig. 8.
6. Sensitivity analysis

In this section we employ the functional ANOVA technique
[23,20,41,42,33] (see also Appendix B) in order to identify which
harmonic in the Fourier series representation of the random
Fig. 7. Threshold criterion for the identification of quasi-conduction states. These
diagrams refer to the case where the boundary perturbations have correlation
length lc = 0.5. We show the mean Nusselt number (-), the minimum and the
maximum Nusselt numbers (--) and the classical bifurcation diagram (� � �) obtained
for spatially-uniform deterministic boundary conditions. Figure (b) is a zoom-in of
figure (a).



Fig. 8. Probability that a stable quasi-conduction state develops within the cavity
as a function of the Rayleigh number and the correlation length of the temperature
processes at the horizontal walls of the cavity. Figure (b) is a zoom-in of figure (a).

Fig. 9. Averaged global sensitivity indices of different terms in the ANOVA
decomposition of the Nusselt number for variations in the amplitude of the
harmonics representing the temperature boundary condition at the lower horizon-
tal wall. Shown are sensitivities of (a) first-order, (b) second-order and (c) third-
order interaction terms versus the Rayleigh number. The vertical dashed line in
each plot identifies the classical bifurcation point at Rac = 2585.
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temperature boundary conditions is responsible the heat transfer
enhancement and also triggers the transition from quasi-conduc-
tion to fully developed convection. This sensitivity study allows
us to make inferences about the most important unstable modes
and, in some sense, it is similar to the perturbation approach
adopted by Kelly and Pal [8] for the infinite fluid layer.

Thus, let us consider an ANOVA expansion of the Nusselt num-
ber in terms of the set of random variables representing the ampli-
tude of the boundary conditions

NuðfÞ ¼ Nu0 þ
X2M

i¼1

NuiðfiÞ þ
X2M

i<j

Nuijðfi; fjÞ þ
X2M

i<j<k

Nuijkðfi; fj; fkÞ þ � � � ;

ð34Þ

where

f ¼def
nð1Þ1 ; . . . ; nð1ÞM ; nð2Þ1 ; . . . ; nð2ÞM

h i
: ð35Þ

We recall that M depends on the spatial correlation length of the
temperature process. Specifically, for lc = 0.5 – which is the case
we examine here – we obtain a total number of 10 (5 + 5) random
variables. In other words, the nominal dimension [33] of the param-
eter space here is 10 (see Table 1).

The sensitivity (in the sense of Sobol [43]) of the integrated
Nusselt number with respect to the amplitude of the boundary
modes can be studied as a function of the Rayleigh number. This
provides an insight, e.g., on which harmonic of the temperature
distribution at the boundaries (first-order interaction) or combina-
tion of harmonics (higher-order interactions) are most important
in the transition from quasi-conduction to fully developed convec-
tion. The results of this study are summarized in Fig. 9 where we
plot the averaged global sensitivity factors for first-, second- and
third-order interaction terms corresponding to all five parameters

nð1Þ1 ; . . . ; nð1Þ5

h i
defining the random temperature process at the low-

er horizontal wall. These sensitivity factors are explicitly defined as
Zð1Þi ¼
def r2½Nui�

r2½Nu� ; ð36Þ

Zð2Þi ¼
defX

j

r2½Nuij�
r2½Nu� ; ð37Þ

Zð3Þi ¼
defX

j;k

r2½Nuijk�
r2½Nu� ; ð38Þ

where Nui, Nuij and Nuijk are the interaction terms in Eq. (34) while
r2[�] denotes the variance operator (see Appendix B for further
details).

As seen from the plots of ZðkÞi (k = 1,2,3), the subcritical quasi-
conduction region (Ra < Rac) is rather sensitive to variations in
the amplitude of all the temperature boundary modes. We also no-
tice that the highest sensitivity of the Nusselt number within the
transcritical region Ra ’ 2700 � 3000 is achieved by the variable
number ‘‘1’’ (see the plots of ZðjÞ1 ). This variable characterizes the
amplitude of the lowest frequency mode in the Fourier expansion
of the temperature boundary conditions, i.e., cos(px). Therefore,
the heat transfer enhancement in the transcritical region, i.e., the
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stochastic drift phenomenon described in Section 4.2, is mainly
influenced by such harmonic.

The transition from quasi-conduction to fully developed con-
vection is captured by the second- and the third-order interaction
terms. In fact, as seen from Fig. 9(b) and (c), the global sensitivity
factors of second- and third-order interactions undergo a sudden
jump exactly in correspondence of the classical bifurcation point.
This suggests that the interaction between different boundary
modes is switched on by the transition and the resulting flow be-
comes rather sensitive to variations in the amplitude of the terms
associated with the corresponding harmonics.

Finally, we notice that there exist a bulk phenomenon in the
sensitivity factors within the region of fully developed convection,
i.e., for Ra > 3000. This suggests that in such region the Nusselt
number is equally sensitive to variations in the amplitude of differ-
ent harmonics of the temperature expansion at the lower wall. This
is expected since the heat transfer in the fully developed convec-
tion region in primarily determined by advection.

7. Summary

We have studied the Rayleigh–Bénard stability problem for a
fluid confined within a square enclosure subject to non-uniform
random perturbations in the temperature distribution at the hori-
zontal walls. These temperature perturbations were modeled as
Gaussian processes satisfying a Gaussian correlation function. We
have simulated the Oberbeck–Boussinesq equations and computed
many ensembles of realizations of the natural convective flow
within the cavity by sampling the temperature processes at the
boundaries for different correlation length and amplitude. This al-
lowed us to obtain stochastic bifurcation diagrams for the inte-
grated Nusselt number near the classical onset of convective
instability. These diagrams show that random perturbations render
the bifurcation process to convection imperfect, in agreement with
known theoretical results [15]. In particular, the pure conduction
state does no longer exist, being replaced by a quasi-conduction re-
gime. We have observed subcritical and nearly supercritical quasi-
conduction stable states within the range of Rayleigh numbers
Ra = 0 � 4000. This suggests that random temperature perturba-
tions at the horizontal walls can extend the range of stability of
quasi-conduction states beyond the classical bifurcation point.
However, the probability that these states develop within the cav-
ity is rather low. A statistical analysis of the bifurcation diagrams
near the classical onset of convection shows the existence of a sto-
chastic drift phenomenon in the heat transfer coefficient, espe-
cially in the transcritical region. The increment we have observed
in the mean Nusselt number is about 10% for temperature pertur-
bations having a correlation length comparable with the sidelength
of the cavity. In order to obtain a better understanding of this phe-
nomenon, we have performed a sensitivity analysis of the
integrated Nusselt number based on a functional ANOVA decom-
position. This allowed us to identify which harmonics in the expan-
sion of the random temperature distributions at the horizontal
walls are most effective in enhancing the heat transfer coefficient.
Indeed, the sensitivity factors corresponding to the first-, second-
and third-order interaction terms suggest that the harmonic with
smallest wavelength is the most effective. In addition, the flow
transition from quasi-conduction to fully developed convection is
found to be accurately captured by the second- and the third-order
interaction terms.
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Appendix A. Galerkin discretization

Let us consider an expansion of random temperature and veloc-
ity fields in terms of normalized eigenfunctions bwnðx; yÞ andbCmðx; yÞ

wðx; y;xÞ ¼
XNv

n¼1

anðxÞbwnðx; yÞ; ð39Þ

T�ðx; y;xÞ ¼
XNt

m¼1

bmðxÞbCmðx; yÞ: ð40Þ

The analytical expression of bwn and bCm will be given in the subse-
quent Sections A.1 and A.2. The advantage of using the representa-
tions (39) and (40) is that they automatically satisfy all the
boundary conditions as well as the continuity equation [44,18].
We remark that higher-order spectral element discretizations of
the streamfunction and the temperature fields can be also consid-
ered [45–47]. A substitution of Eqs. (39) and (40) into Eqs. (15)
and (16) and subsequent Galerkin projection onto bwk and bCk,
respectively, gives the following system of algebraic equations (re-
peated indices are summed unless otherwise stated)

anamBnmk � PranCnk þ RaPrðbnDnk þN kÞ ¼ 0; ð41Þ
� anbmEnmk � an Fnk þ Pnkð Þ � C2

k bk þMk ¼ 0; ð42Þ

where the coefficients N n;Mk, etc., are defined as

N k¼
def
Z 1

0

Z 1

0
y
@g2

@x
� @g1

@x

� �
þ @g1

@x

� �bwkdxdy;

Mk¼
def
Z 1

0

Z 1

0
y

@2g2

@x2 �
@2g1

@x2

 !
þ @

2g1

@x2

" #bCkdxdy;

Ank¼
def
Z 1

0

Z 1

0
r2 bwn

bwkdxdy; Cnk¼
def
Z 1

0

Z 1

0
r4 bwn

bwkdxdy;

Dnk¼
def
Z 1

0

Z 1

0

@ bCn

@x
bwkdxdy; Fnk¼

def
Z 1

0

Z 1

0

@bwn

@x
bCkdxdy;

Pnk¼
def
Z 1

0

Z 1

0

@bwn

@y
y
@g2

@x
� @g1

@x

� �
þ @g1

@x

� �
� @

bwn

@x
ðg2� g1Þ

" #bCkdxdy;

Bnmk¼
def
Z 1

0

Z 1

0

@bwn

@y
@r2bwm

@x
� @

bwn

@x
@r2bwm

@y

 !bwkdxdy;

Enmk¼
def
Z 1

0

Z 1

0

@bwn

@y
@ bCm

@x
� @

bwn

@x
@ bCm

@y

 !bCkdxdy:

Also, C2
k denote the eigenvalues of the Helmholtz equation (see

Appendix A.1). The numerical solution to the nonlinear algebraic
system (41) and (42) is computed through the Newton method,
for a resolution of 20 basis function along each direction x and y,
i.e., Nv = 400, Nt = 400 basis functions in the series expansions (39)
and (40). The initial guesses for the streamfunction and the temper-
ature fields in the Newton iteration are set to be random. In this
way, for each specific realization of the boundary conditions, we ob-
tain the Fourier coefficients an(x) and bm(x). Once these coeffi-
cients are available, the streamfunction and the temperature
fields can be easily recovered from Eqs. (39), (40) and (11).

A.1. Temperature expansion

We consider an eigenfunction expansion based on the classical
Helmholtz equation in Cartesian coordinates

r2T� þ C2T� ¼ 0; ð43Þ

with homogeneous boundary conditions
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T�ðx;0Þ ¼ T�ðx;1Þ ¼ @T�ð0; yÞ
@x

¼ @T�ð1; yÞ
@x

¼ 0: ð44Þ

A separation of variables in Eq. (43) gives the following two Sturm–
Liouville problems

d2X

dx2 þ a2X ¼ 0;
dXð0Þ

dx
¼ dXð1Þ

dx
¼ 0; ð45Þ

d2Y

dy2 þ b2Y ¼ 0; Yð0Þ ¼ Yð1Þ ¼ 0; ð46Þ

whose solutions are the well known [24,25] normalized
eigenfunctions

XnðxÞ ¼
1 if n ¼ 0ffiffiffi

2
p

cosðnpxÞ if n ¼ 1;2;3; . . .

�
ð47Þ

YmðyÞ ¼
ffiffiffi
2
p

sinðmpyÞ m ¼ 1;2;3; . . . ; ð48Þ
while the eigenvalues are

an ¼ pn for n ¼ 0;1;2; . . . ; ð49Þ
bm ¼ pm for m ¼ 1;2; . . . ð50Þ

This implies that the eigenvalues of (43) are

C2
nm ¼ p2ðn2 þm2Þ: ð51Þ

Thus, the two-dimensional temperature basis function can be writ-
ten asbCnðx; yÞ ¼ XiðnÞðxÞYjðnÞðyÞ; ð52Þ

where i(n) and j(n) are suitable subsequences obtained according an
ordering of C2

ij.

A.2. Velocity expansion

All the velocity boundary conditions are of no-slip type. This
means @w/@x = @w/@y = 0 everywhere at the boundary. In order to
generate a divergence free basis for the velocity representation sat-
isfying such boundary conditions it is convenient to consider the
following eigenvalue problem [44,48,18,12]

@4w
@x4 þ

@4w
@y4 ¼ K4w; ð53Þ

wðx;0Þ ¼ @wðx;0Þ
@x

¼ 0; wðx;1Þ ¼ @wðx;1Þ
@x

¼ 0; ð54Þ

wð0; yÞ ¼ @wð0; yÞ
@y

¼ 0; wð1; yÞ ¼ @wð1; yÞ
@y

¼ 0: ð55Þ

This eigenvalue problem is symmetric6 and separable. A substitu-
tion of the ansatz

wðx; yÞ ¼ XðxÞYðyÞ; ð56Þ

into (53) yields two equivalent eigenvalue problems for X(x) and
Y(y) in the form

d4X

dx4 ¼ a4X; ð57Þ

Xð0Þ ¼ Xð1Þ ¼ @Xð0Þ
@x

¼ @Xð1Þ
@x

¼ 0: ð58Þ

The general integral of (57) is easily found7 as

XðxÞ ¼ a sinðaxÞ þ b cosðaxÞ þ c sinhðaxÞ þ d coshðaxÞ:
6 The spectral theory for linear operators in a Hilbert space guarantees that the
eigenfunction set is then complete (the nullspace of the operator o4/ox4 + o4/oy4 with
boundary conditions (54) and (55) is empty).

7 It is sufficient to consider a solution in the form X(x) = ebx to obtain, by
substitution, b4 = a4, i.e., b = {a,�a, ia,�ia}.
By enforcing the boundary conditions (58) we obtain the following
normalized set of eigenfunctions

XiðxÞ ¼

cos½aiðx� 1=2Þ�= cos½ai=2��
cosh½aiðx� 1=2Þ�= cosh½ai=2� i ¼ 1;3;5; . . .

sin½aiðx� 1=2Þ�= sin½ai=2��
sinh½aiðx� 1=2Þ�= sinh½ai=2� i ¼ 2;4;6; . . .

8>>><>>>:
where the eigenvalues ai are solutions of the transcendental
equation

tanh
ai

2

	 

¼
� tanðai=2Þ for i ¼ 1;3;5; . . .

tanðai=2Þ for i ¼ 2;4;6; . . .

�
ð59Þ

A similar solution can be obtained for Y(y). A normalized basis for
the two-dimensional streamfunction can be obtained as a tensor
product of one-dimensional bases asbwnðx; yÞ ¼ XiðnÞðxÞYjðnÞðyÞ; ð60Þ

where i(n) and j(n) are suitable subsequences obtained according to
an eigenvalue ordering

K4
n ¼ a4

iðnÞ þ b4
jðnÞ: ð61Þ
Appendix B. ANOVA decomposition for sensitivity analysis

The key idea of ANOVA is to represent a high-dimensional func-
tion f(x1, x2, . . . , xN) in terms of a superimposition of functions
involving a lower number of variables (interaction terms), and then
truncate the series at specific interaction order. Specifically, the
ANOVA expansion of an N-dimensional scalar function f takes the
form [49]

f ðx1; x2; . . . ; xNÞ ¼ f0 þ
XN

i¼1

fiðxiÞ þ
XN

i<j

fijðxi; xjÞ

þ
XN

i<j<k

fijkðxi; xj; xkÞ þ � � � : ð62Þ

The function f0 is a constant. The functions fi(xi), which we
shall call first-order interactions, give us the overall effects of
the variables xi in f as if they were acting independently of the
other input variables. The functions fij(xi,xj) describe the interac-
tion effects of the variables xi and x j, and therefore they will be
called second-order interactions. Similarly, higher-order terms re-
flect the cooperative effects of an increasing number of variables.
From a practical viewpoint, the computation of the various terms
in the ANOVA expansion can be performed by selecting a suitable
measure space, e.g., the space of l-integrable functions in the
hypercube [0,1]N, where l denotes an integration measure. In this
case we have

f0 ¼
Z 1

0
. . .

Z 1

0
f ðx1; . . . ; xNÞdlðx1; . . . ; xNÞ; ð63Þ

fiðxiÞ ¼
Z 1

0
. . .

Z 1

0
f ðx1; . . . ; xi�1; xiþ1; . . . ; xNÞ

� dlðx1; . . . ; xi�1; xiþ1; . . . ; xNÞ � f0; ð64Þ

For instance, if the measure l is selected as

dlðx1; . . . ; xNÞ ¼
YN

i¼1

dxi; ð65Þ

then we obtain the classical ANOVA-HDMR method [23]. Similarly,
if we set
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dlðx1; . . . ; xNÞ ¼
YN
i¼1

dðxi � ciÞdxi; ci 2 ½0;1�; ð66Þ

then we obtain the so-called anchored ANOVA [50] decomposition.
The vector (c1, . . . , cN) in this case is known as anchor point and it can
be selected according to many different criteria (see, e.g., [21]). The
ANOVA representation of a field can be effectively used as a tool for
sensitivity analysis [43,51]. To this end, let us first recall that all the
interaction terms (63) and (64), etc., in the ANOVA expansion (62)
are mutually orthogonal with respect to the measure l. This implies
that the variance of f, here denoted as r2[f], is simply the sum of the
variances associated with each interaction term, i.e.,

r2½f � ¼
XN

i¼1

r2½fi� þ
XN

i<j

r2½fij� þ � � � ; ð67Þ

where

r2½f �¼def
Z

f 2dl�
Z

fdl
� �2

: ð68Þ

The integrals appearing in Eq. (67) can be computed by using a
multi-element quadrature formula [33]. Following Sobol [43], we
shall define the global sensitivity indices of the system as the ratio
between the variance of each term in the ANOVA decomposition
and the total variance of the function f, i.e.,

Ri ¼
def r2½fi�

r2½f � ; Rij ¼
def r2½fij�

r2½f � ; . . . ð69Þ

From Eq. (67) it easily follows that

XN

i¼1

Ri þ
XN

i<j

Rij þ � � � ¼ 1: ð70Þ

Moreover, we shall define the following averaged global sensitivity
indices

Zð1Þi ¼
defRi; Zð2Þi ¼

defX
j

Rij; Zð3Þi ¼
defX

j;k

Rijk; . . . ð71Þ

representing the relative importance of one specific parameter
overall the others at a prescribed interaction level. With the aid of
Eq. (71) we can study which input variable has more influence on
the response of the system. For instance, we can quantify which
harmonic in the Fourier series representation of the random tem-
perature boundary conditions triggers the transition from quasi-
conduction to convection or affects the heat transfer coefficient to
the greatest extent.
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